

Free your innovation

Freenove is an open-source electronics platform.

www.freenove.com

Warning

When you purchase or use this product, please note the following:

 This product contains small parts. Swallowing or improper operation them can cause serious infections

and death. Seek immediate medical attention when the accident happened.

 Do not allow children under 3 years old to play with or near this product. Please place this product in

where children under 3 years of age cannot reach.

 Do not allow children lack of ability of safe to use this product alone without parental care.

 Never use this product and its parts near any AC electrical outlet or other circuits to avoid the potential

risk of electric shock.

 Never use this product near any liquid and fire.

 Keep conductive materials away from this product.

 Never store or use this product in any extreme environments such as extreme hot or cold, high humidity

and etc.

 Remember to turn off circuits when not in use this product or when left.

 Do not touch any moving and rotating parts of this product while they are operating.

 Some parts of this product may become warm to touch when used in certain circuit designs. This is

normal. Improper operation may cause excessively overheating.

 Using this product not in accordance with the specification may cause damage to the product.

About

Freenove is an open-source electronics platform. Freenove is committed to helping customer quickly realize

the creative idea and product prototypes, making it easy to get started for enthusiasts of programing and

electronics and launching innovative open source products. Our services include:

 Electronic components and modules

 Learning kits for Arduino

 Learning kits for Raspberry Pi

 Learning kits for Technology

 Robot kits

 Auxiliary tools for creations

Our code and circuit are open source. You can obtain the details and the latest information through visiting

the following web sites:

http://www.freenove.com

https://github.com/freenove

Your comments and suggestions are warmly welcomed, please send them to the following email address:

support@freenove.com

http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

References

You can download the sketches and references used in this product in the following websites:

http://www.freenove.com

https://github.com/freenove

If you have any difficulties, you can send email to technical support for help.

The references for this product is named Freenove Starter Kit for Arduino, which includes the following

folders and files:

 Datasheet Datasheet for electronic components and modules

 Libraries Libraries for Arduino sketches

 Processing Sketches for Interacting with Processing projects

 Sketches Sketches for Arduino projects

 Readme.txt Instructions

 Tutorial.pdf Tutorial for Arduino

 Processing.pdf Tutorial for Interacting with Processing

Support

Freenove provides free and quick technical support, including but not limited to:

 Quality problems of products

 Problems in using products

 Questions for learning and technology

 Opinions and suggestions

 Ideas and thoughts

Please send email to:

support@freenove.com

On working day, we usually reply to you within 24 hours.

Copyright

Freenove reserves all rights to this book. No copies or plagiarizations are allowed for the purpose of

commercial use.

The code and circuit involved in this product are released as Creative Commons Attribution ShareAlike 3.0.

This means you can use them on your own derived works, in part or completely, as long as you also adopt

the same license. Freenove brand and Freenove logo are copyright of Freenove Creative Technology Co., Ltd

and cannot be used without formal permission.

http://www.freenove.com/
https://github.com/freenove
mailto:support@freenove.com

I Contents █ www.freenove.com

Contents

Preface ... 1

Arduino Board .. 1

Arduino Software .. 4

First Use .. 7

Chapter 1 LED Blink ... 11

Project 1.1 Control LED by Manual Button .. 11

Project 1.2 Control LED by Arduino .. 18

Chapter 2 Two LEDs Blink .. 24

Project 2.1 Two LEDs Blink ... 24

Chapter 3 LED bar graph ... 31

Project 3.1 LED bar graph Display ... 31

Chapter 4 LED Blink Smoothly ... 38

Project 4.1 LEDs Emit Different Brightness ... 38

Project 4.2 LED Blink Smoothly .. 43

Chapter 5 Control LED Through Push Button .. 45

Project 5.1 Control LED Through Push Button .. 45

Project 5.2 Change LED State by Push Button .. 49

Chapter 6 Serial... 51

Project 6.1 Send data through Serial .. 51

Project 6.2 Receive Data through Serial Port .. 56

Project 6.3 Application of Serial ... 60

Chapter 7 ADC .. 63

Project 7.1 ADC .. 63

Project 7.2 Control LED by Potentiometer ... 68

Project 7.3 Control LED through Photoresistor .. 71

Chapter 8 RGB LED .. 75

Project 8.1 Control RGB LED through Potentiometer ... 75

Project 8.2 Colorful LED .. 79

Chapter 9 Buzzer .. 82

Project 9.1 Active Buzzer .. 82

Project 9.2 Passive Buzzer .. 87

Chapter 10 Motor .. 90

Project 10.1 Control Motor by Relay .. 90

Project 10.2 Control Motor by L293D .. 97

Chapter 11 Servo ... 103

Project 11.1 Servo Sweep .. 103

Project 11.2 Control Servo by Potentiometer .. 107

Chapter 12 Temperature Sensor .. 110

Project 12.1 Detect the temperature ... 110

Chapter 13 Joystick ... 113

Project 13.1 Joystick .. 113

II Contents www.freenove.com █

Chapter 14 Acceleration sensor ... 117

Project 14.1 Acceleration Detection .. 117

Chapter 15 LED Matrix .. 124

Project 15.1 74HC595 ... 124

Project 15.2 LED Matrix .. 130

Chapter 16 LCD1602 .. 139

Project 16.1 Display the string on LCD1602 ... 139

Project 16.2 LCD1602 Clock ... 144

What's next? .. 153

Appendix .. 154

ASCII table .. 154

Resistor color code .. 155

1 Preface █ www.freenove.com

Preface

If you want to creat somethings fun or make your great ideas real, using this product will be a good start.

Maybe you have heard of Arduino before. If not, it doesn't matter. You can easily create dozens of interesting

projects, and gradually realize the fun of using Arduino to complete creative works by reference to this book.

Arduino is an open-source electronics platform based on easy-to-use hardware and software. It's intended

for anyone making interactive projects. Arduino has a lot of fans in the world. They contributed a lot of high

quality open source code and circuit, so we can use these free code and the circuit to realize our own creativity

more efficiently.

Usually, an Arduino project consists of code and circuit. If you never dealt with code and circuit before, don't

worry. Because this book will gradually introduce C programming language and basic knowledge of electronic

circuit from easy to difficult. And this product contains all electronic components and modules needed to

complete these projects. You can also ask us for fast and free technical support at any time. It is especially

suitable for beginners.

Arduino Board

Arduino Board is a circuit board, which integrates micro controller, input, output interface and etc. Arduino

Board can use the sensor to sense the environment and receive user's operation to control LED, motor rotation,

etc. We just need to assembly circuit and write the code.

Currently, Arduino Board has several models, and the code between boards of different types is universal

(some boards may not be completely compatible because of the differences in hardware). Popular boards

include:

UNO

2 Preface www.freenove.com █

MICRO

NANO

MEGA

The board used in this book is Freenove UNO, and it is fully compatible to Arduino UNO. Diagram of Freenove

UNO board is shown below:

Digital I/O ports

Analog I/O ports Power ports

Reset button

DC interface

LED L

LED TX

LED RX

LED ON

USB interface

3 Preface █ www.freenove.com

 Digital I/O ports is used to connect to other components or modules, to receive an input signal, or to

send a control signal. Usually, we name it by adding a "D" in front of the number, such as D13.

 USB interface is used to provide power, upload code or communicate with PC.

 LED L is connected to digital I/O port 13 (D13).

 LED TX, RX is used to indicate the state of the serial communication.

 DC interface is connected DC power to provide power for the board.

 Power ports can provide power for electronic components and modules.

 Analog I/O ports can be used to measure analog signals.

 LED ON is used to indicate the power state.

Freenove UNO is the most suitable board to complete the experiments of this book. You can also choose to

use Arduino UNO, Arduino MICRO, Arduino NANO, Arduino MEGA (or other boards compatible to them).

4 Preface www.freenove.com █

Arduino Software

Arduino Software (IDE) is used to write and upload the code for Arduino Board.

First, install Arduino Software (IDE): visit https://www.arduino.cc, click "Download" to enter the download page.

Download corresponding installation program according to your operating system. If you are a Ｗindows user,

please select the "Windows Installer" to download to install the driver correctly.

https://www.arduino.cc/

5 Preface █ www.freenove.com

After the download completes, run the installer. For Windows users, there may pop up a installation dialog

box of driver during the installation process. When it is popped up, please allow the installation.

After installation is complete, an Arduino Software shortcut will be generated in the desktop. Run the Arduino

Software.

The interface of Arduino Software is as follows:

 Configured board

and serial port

Message

area

Toolbar

Menus

Text editor

Console

6 Preface www.freenove.com █

Programs written using Arduino Software (IDE) are called sketches. These sketches are written in the text

editor and are saved with the file extension .ino. The editor has features for cutting/pasting and for

searching/replacing text. The message area gives feedback while saving and exporting and also displays

errors. The console displays text output by the Arduino Software (IDE), including complete error messages

and other information. The bottom righthand corner of the window displays the configured board and serial

port. The toolbar buttons allow you to verify and upload programs, create, open, and save sketches, and

open the serial monitor.

Verify

Checks your code for errors compiling it.

Upload

Compiles your code and uploads it to the configured board.

New

Creates a new sketch.

Open

Presents a menu of all the sketches in your sketchbook. Clicking one will open it within the

current window overwriting its content.

Save

Saves your sketch.

Serial Monitor

Opens the serial monitor.

Additional commands are found within the five menus: File, Edit, Sketch, Tools, Help. The menus are context

sensitive, which means only those items relevant to the work currently being carried out are available.

7 Preface █ www.freenove.com

First Use

Open the exmple sketch "Blink" with Arduino Software.

Select board "Arduino/Genuino Uno".

Connect Freenove UNO to computer with USB cable.

8 Preface www.freenove.com █

Select the serial port. Your serial number may be different from the following figure. If it is not detected

immediately, please wait for a while, then click "Tools" to check again.

Click "Verify" button.

The following figure shows the code is being compiled.

Wait a moment for the compiling to be completed. Figure below shows the code size and percentage of

space occupation.

9 Preface █ www.freenove.com

Usually, when we write code, if it has a syntax error, the interface will prompt the error message. Then the

compiling can't be completed.

Click "Upload" button.

Figure below shows code are uploading.

Wait a moment, then the uploading is completed.

10 Preface www.freenove.com █

After that, we will see the LED marked with "L" on Freenove UNO starts blinking. It indicates that the code is

running now!

So far, we have completed the first use. I believe you have felt the joy of it. Next, we will carry out a series of

projects, from easy to difficult, taking you to learn the Arduino programming and the building of electronic

circuit.

LED L starts

blinking

11 Chapter 1 LED Blink █ www.freenove.com

Chapter 1 LED Blink

We have previously tried to make the LED marked with "L" blink on Freenove UNO board. Now let us use

electronic components and code to reproduce the phenomenon, and try to understand the principle among

them.

Project 1.1 Control LED by Manual Button

First, try using the push button to make the LED blink manually.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED x1

Resistor 220Ω x1

Push button x1

Jumper M/M x2

12 Chapter 1 LED Blink www.freenove.com █

Circuit knowledge

Power supply

Power supply provide energy for the circuit, and it is divided into DC power and AC power.

Voltage and current of DC power supply remains the same over time, such as battery, power adapter.

Voltage and current of AC power supply evolves periodically with time. Its basic form is sinusoidal

voltage(current). It is suitable for long-distance transmission of electric energy. And it is used to supply power

to homes.

Generally, electronic circuits use DC. Home appliances have rectifiers to convert AC into DC before they use.

Battery or battery pack can be represented by the following symbols:

The positive and negative poles of the power supply can not be directly connected , otherwise it may scald

you and cause damage to the battery.

Voltage

The unit of voltage(U) is volt(V). 1kV=1000V, 1V=1000mV, 1mV=1000μv.

Voltage is relative. As to a dry battery marked with "1.5V", it's positive (+) voltage is 1.5V higher than the

negative (-) voltage. If you specify the negative as reference（0V），the positive voltage will be +1.5V.

Positive voltage is

+1.5V

Specify the negative

as reference（0V）

Specify the positive

as reference（0V）

Negative voltage is

-1.5V

-1.5V

13 Chapter 1 LED Blink █ www.freenove.com

When two dry batteries are connected in series, the voltage of each point is as follows:

In practical circuits, we usually specify negative as reference voltage (0V), which is called "Ground". The

positive is usually called "VCC". The positive and negative of power supply is usually represented by two

following symbols:

 Positive(VCC) Negative(Ground)

Voltage

+1.5V

Voltage

+3.0V

Reference

Reference

Voltage

+1.5V

Voltage

-1.5V

Voltage

-1.5V

Voltage

-3.0V

Reference

14 Chapter 1 LED Blink www.freenove.com █

Current

The unit of current(I) is ampere(A). 1A=1000mA, 1mA=1000μA.

Closed loop consisting of electronic components is necessary for current.

In the figure below: the left is a loop circuit, so current flows through the circuit. The right is not a loop circuit,

so there is no current.

Resistor

The unit of resistance(R) is ohm(Ω). 1MΩ=1000kΩ, 1kΩ=1000Ω.

Resistor is an electrical component that limits or regulates the flow of current in an electronic circuit.

The left is the appearance of resistor. and the right is the symbol of resistor represented in circuit.

Color rings attached to the resistor is used to indicate its resistance. For more details of resistor color code,

please refer to the appendix of this book.

With the same voltage there will be less current with more resistance. And the links among current, voltage

and resistance can be expressed by the formula below: I=U/R.

In the following diagram, the current through R1 is: I=U/R=5V/10kΩ=0.0005A=0.5mA.

Do not connect the two poles of power supply with low resistance, which will make the current too high to

damage electronic components.

15 Chapter 1 LED Blink █ www.freenove.com

Component knowledge

Let us learn about the basic features of components to use them better.

Jumper

Jumper is a kind of wire. It is designed to connect the components together with its two terminals by inserting

it onto Breadboard or Freenove UNO.

Jumpers have male end (pin) and female end (slot), so jumpers can be divided into the following 3 types.

 Jumper M/M

 Jumper F/F

 Jumper F/M

Breadboard

There are many small holes on breadboard to connect Jumper.

Some small holes are connected inside breadboard. The following figure shows the inner links among those

holes.

Push button

Push button has 4 pins. Two pins on the left is connected, and the right is similar as the left, which is shown

in the below:

When the push button is pressed, the circuit is turned on.

16 Chapter 1 LED Blink www.freenove.com █

LED

LED is a kind of diode. LED will shine only if the long pin of LED is connected to the positive electrode and the

short pin is connected to negative electrode.

This is also the features of the common diode. Diode works only if the voltage of its positive electrode is

higher than its negative electrode.

The LED can not be directly connected to power supply, which can damage component. A resistor with certain

resisitance must be connected in series in the circuit of LED.

17 Chapter 1 LED Blink █ www.freenove.com

Circuit

In this experiment, the LED is controlled by push button, and Freenove UNO here only plays the role of power

supply in the circuit.

Firstly, connect conmponents with jumpers according to "hardware connection". Secondly, check the

connetion to confirm there is no mistakes. Finally, connect Freenove UNO board to computer with USB cable

to avoid that touch on wires may cause short-circuit fault.

Schematic diagram

Hardware connection

LED lights up when you press the push button, and it get off when you release the button.

18 Chapter 1 LED Blink www.freenove.com █

Project 1.2 Control LED by Arduino

Now, try using Arduino to make LED blink through programing.

Component list

Components are basically the same with those in last section. Push button is no more needed.

Circuit knowledge

Analog signal and Digital signal

The analog signal is a continuous signal in time and value. On the contrary, digital signal is a discrete signal

in time and value.

Most signals in life are analog signals, for example, the temperature in one day is continuously changing, and

will not appea a sudden change directly from 0℃ to 10℃, while the digital signal is a jump change, which can

be directly from 1 to 0.

Their difference can be illustrated by the following figure.

In practical application, the frequently used digital signal is binary signal, that is 0 and 1. The binary signal

only has two forms (0 or 1), so it has strong stability. And digital signal and analog signal can be converted

to each other.

Low level and high level

In circuit, the form of binary (0 and 1) is present as low level and high level.

Low level is generally equal to ground voltage(0V). High level is generally equal to the operating voltage of

components.

The low level of Freenove UNO is 0V and high level is 5V, as shown below. When IO port on Freenove UNO

outputs high level, components of small power can be directly lit, like LED.

19 Chapter 1 LED Blink █ www.freenove.com

Code knowledge

Before start writting code, we should learn about the basic programming knowledge.

Comments

Comments are the words used to explain for the sketchs, and won't affect the running of code.

There are two ways to use comments of sketchs.

1. Symbol "//"

"//" will comment out the content behind it in current line:

1 // this is a comment area in this line.

The content in front of "//" will not be affected.

1 delay(1000); // wait for a second

2. Symbol "/*"and "*/"

"/*" and "*/" will comment out the content between them:

1 /* this is comment area. */

"/*" and "*/" can comment out multiple lines.:

1

2

3

4

/*

 this is a comment line.

this is a comment line.

*/

Data type

When programming, we often use digital, characters and other data. C language has several basic data types

as follws:

int: A number that does not have a fractional part, an integer, such as 0, 12, -1;

float: A number that has a fractional part, such as 0.1, -1.2;

char: It means character, such as 'a', '@', '0';

For more date types, please visit the website: https://www.arduino.cc-Learning-Reference-Data Types.

Constant

Constant is a kind of data that can not be changed, such as int type 0, 1, float type 0.1, -0.1, char type 'a', 'B'.

Variable

A variable is a kind of data that can be changed. It consists of a name, a value, and a type. Variables need to

be defined before use, such as:

1 int i;

"int" indicates the type, ";" indicates the end of the statement. The statement is usually written in one single

line; and these statements form the code.

After declaration of the variable, you can use it. The following is an assignment to a variable:

1 i = 0; // after the execution, the value of i is 0

"=" is used to passes the value of a variable or constant on the right side to the variable on the left.

https://www.arduino.cc/

20 Chapter 1 LED Blink www.freenove.com █

A certain number of variables can be declard in one statement, and a variable can be assigned multiple times.

Also, the value of a variable can be passed to other variables. For example:

1

2

3

4

int i, j;

i = 0; // after the execution,the value of i is 0

i = 1; // after the execution,the value of i is 1

j = i; // after the execution,the value of j is 1

Function

Function is a collection of statements with a sequence of order, which perform a defined task. Let's define a

function void blink() as follows:

1

2

3

4

5

6

void blink() {

 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

}

"void" indicates that the function does not return a value (the chapter 4 will detail the return value of functions);

"()" its inside is parameters of a function (the chapter 2 will detail the parameters of the function). No content

inside it indicates that this function has no parameters;

"{}" contains the entire code of the function.

After the function is defined, it is necessary to be called before it is executed. Let's call the function void blink(),

as shown below.

1 blink();

When the code is executed to a statement calling the function, the function will be executed. After execution

of the function is finished, it will go back to the statement and execute the next statement.

 …

21

22

23

24

…

…

delay(500);

blink();

delay(500);

blink();

…

 31

32

33

34

35

36

void blink() {

 digitalWrite(13, HIGH);

 delay(1000);

 digitalWrite(13, LOW);

 delay(1000);

}

Some functions have one or more parameters. When you call such functions, you need to write parameters

inside "()":

1

2

digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(1000); // wait for a second

21 Chapter 1 LED Blink █ www.freenove.com

Circuit

Now, let 's use IO port of UNO Freenove to provide power for the LED. D13 pin of Freenove UNO is the digital

pin. It can output high level or low level. In this way, Freenove UNO can control the sate of LED.

Schematic diagram

Hardware connection

22 Chapter 1 LED Blink www.freenove.com █

Sketch

Sketch 1.2.1

In order to make the LED blink, we need to make the 13 pin (D13) of Freenove UNO output high and low

level alternately.

We highly recommend you type the code in person instead of copying and pasting, by this method, you can

develop your coding skills and get more knowledge.

1

2

3

4

5

6

7

8

9

10

11

12

13

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

The Arduino code usually contain two basic functions: void setup() and

void loop().

After Arduino board is reset, the setup() function will be executed firstly,

then the loop() function will be executed.

setup() function is generally used to write code to initialize the hardware.

And loop() function is used to write code to achieve certain functions.

loop() function is executed repeatedly. When the execution reaches the

end of loop(), it will jump to the beginning of loop() to run again.

Reset 1

2

…

5

6

7

8

…

13

// the setup function runs once when you press reset or power the board

void setup() {

…

}

// the loop function runs over and over again forever

void loop() {

…

}

Reset

Reset operation will lead the

code to be execute from the

beginning. Switching on the

power, finishing uploading the

code and pressing the reset

button will trigger reset

operation.

23 Chapter 1 LED Blink █ www.freenove.com

In the setup () function, first, we set the 13 pin of UNO board as output mode, which can make the port output

high level or low level.

3

4

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

Then, in the loop () function, set the 13 pin of UNO to output high level to make LED light up.

9 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

Wait for 1000ms, that is 1s. Delay () function is used to make control board wait for a moment before executing

the next statement. The parameter indicates the number of millisecondst to wait for.

10 delay(1000); // wait for a second

Then set the 13 pint to output low level, and LED light off. One second later, the execution of loop () function

will be completed.

11

12

digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

The loop() function is constantly being executed, so LED will keep blinking.

The function called above is standard function of the Arduino, which has been defined in the Arduino Software.

Those function can be called directly. We will introduce more common standard functions in later chapters.

For more standard functions and the specific use method, please visit https://www.arduino.cc-Learning-

Reference-Functions.

Verify and upload the code, then the LED starts blinking.

https://www.arduino.cc/

24 Chapter 2 Two LEDs Blink www.freenove.com █

Chapter 2 Two LEDs Blink

In last chapter, we have already written code to make 1 LED blink on Freenove UNO board. And now, we will

try to make 2 LEDs blink for further programming study.

Project 2.1 Two LEDs Blink

Now, try to make two LEDs blink trough Freenove UNO board.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED x2

Resistor 220Ω x2

Jumper M/M x3

25 Chapter 2 Two LEDs Blink █ www.freenove.com

Code knowledge

In the last chapter, we have simple understanding of programming. Now let's learn more about the basic

programming knowledge.

Parameters of function

In the last chapter, we have used a function with a parameter, such as:

1 delay(1000); // wait for a second

Next, we will define a function with a parameter as below:

1

2

3

void functionA(int i) {

 i = i + 1;

}

"i" is the parameter of this function. "int" is the type of i. When calling this function, it is necessary to enter the

parameter of int type:

1 functionA(1);

The input parameter will be assigned to "i" and involved in the calculation of the functionA(int i):

 …

21

22

23

…

…

functionX();

functionA(1)

functionX();

…

 …

31

32

33

…

void functionA(int i) { // i=1

 i = i + 1; // i=2

}

A function can define more than one parameter and the type of the parameters can be different:

1

2

3

4

5

void functionB(int i, char j) {

 char k = 'a';

 i = i + 1;

 k = j;

}

Boolean data type

Date of Boolean type can only be assigned to "true" or "false".

"true" generally represents a certain relationship which is tenable and correct, and "false" is the opposite.

1

2

3

boolean isTrue;

isTrue = true; // after the execution, "isTrue" is assigned to true.

isTrue = false; // after the execution, "isTrue" is assigned to false.

In the code, the number 0 can be considered to be false, and nonzero numbers can be considered ture.

Logical operator

The logic operators have "&&" (and), "||" (or), "!" (non), and the calculation object of them are boolean type.

The result of logic operation is as follows:

&& true false || true false !

true true false true true true true false

false false false false ture false false true

26 Chapter 2 Two LEDs Blink www.freenove.com █

For example：

1

2

3

4

boolean isTrue;

isTrue = true && false; // after the execution, "isTrue"is assigned to false.

isTrue = true || false; // after the execution, "isTrue"is assigned to true.

isTrue = !true; // after the execution, "isTrue"is assigned to false.

Relation operator

Relational operator is used to judge whether the relationship of the two amount is tenable and correct. If the

relationship is tenable, the result is true. Otherwise, the result is false.

For example, the results of "1>2" is true and the result of "1<2" is false:

1

2

3

boolean isTrue;

isTrue = 1 < 2; // after the execution, "isTrue"is true.

isTrue = 1 > 2; // after the execution, "isTrue"is false.

There are orther relational operators such as "==" (equal to), ">=" (greater than or equal to), "<=" (less than

or equal to) and "=!" (not equal to).

Conditional statement

Conditional statements are used to decide whether or not to execute the program based on the result of

judgment statement.

 1

2

3

4

…

int i = 0;

if (i == 0) // ture

 i = 1; // execution

functionX();

…

 1

2

3

4

…

int i = 0;

if (i != 0) // false

 i = 1; // no execution

functionX();

…

When there are many statements needed to be executed, we can put them into "{}":

 1

2

3

4

5

6

…

int i = 0, j = 0;

if (i == 0) { // ture

 i = 1; // execution

 j = 1; // execution

}

functionX();

…

 1

2

3

4

5

6

…

int i = 0, j = 0;

if (i != 0) { // false

 i = 1; // no execution

 j = 1; // no execution

}

functionX();

…

Only the section of code in which conditions are tenable will be executed:

 1

2

3

4

5

6

…

int i = 0;

if (i == 0) // ture

 i = 1; // execution

else

 i = 1; // no execution

functionX();

…

 1

2

3

4

5

6

…

int i = 0;

if (i != 0) // false

 i = 1; // no execution

else

 i = 1; // execution

functionX();

…

27 Chapter 2 Two LEDs Blink █ www.freenove.com

In addition, it can judge multiple condition.

 1

2

3

4

5

6

7

8

9

10

…

int i = 1;

if (i == 0) // false

 i = 1; // no execution

else if (i == 1)// ture

 i = 2; // execution

else if (i == 2)

 i = 3; // no execution

else

 i = 4; // no execution

functionX();

…

 1

2

3

4

5

6

7

8

9

10

…

int i = 3;

if (i == 0) // false

 i = 1; // no execution

else if (i == 1)// false

 i = 2; // no execution

else if (i == 2)// false

 i = 3; // no execution

else

 i = 4; // execution

functionX();

…

Circuit

Use D4 and D5 pin of Freenove UNO to drive these two LEDs respectively.

Schematic diagram

Hardware connection

28 Chapter 2 Two LEDs Blink www.freenove.com █

Sketch

In order to show the difference between use of function and no use of function, we will write two different

sketches to make two LEDs blink.

Sketch 2.1.1

At first, use sketch without function to make two LEDs blink alternatively.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

// set pin numbers:

int led1Pin = 4; // the number of the LED1 pin

int led2Pin = 5; // the number of the LED2 pin

void setup() {

 // initialize the LED pin as an output:

 pinMode(led1Pin, OUTPUT);

 pinMode(led2Pin, OUTPUT);

}

void loop() {

 digitalWrite(led1Pin, HIGH); // turn the LED1 on

 digitalWrite(led2Pin, LOW); // turn the LED2 off

 delay(1000); // wait for a second

 digitalWrite(led1Pin, LOW); // turn the LED1 off

 digitalWrite(led2Pin, HIGH); // turn the LED2 on

 delay(1000); // wait for a second

}

This section of code is similar with the last section. The difference is the amount of LEDs are two. And two LED

blink alternatively.

Variable scope

In the 2,3 rows of code above, we define two variables to store the pin number. These two variables defined

outside of the function are called "Global variable", which can be called by all other functions. Variables

defined within a function is called "local variable", which can be called only by the current function. When

local variables and global variables have same names, the variable names represents local variable in the

current function.

Verify and upload the code, then you will see the two LEDs blink alternatively.

29 Chapter 2 Two LEDs Blink █ www.freenove.com

Sketch 2.1.2

In the last sketch, we can see that the following two sections of the code are similar, so we will use one function

to replace them to simplify code.

12

13

14

 digitalWrite(led1Pin, HIGH); // turn the LED1 on

 digitalWrite(led2Pin, LOW); // turn the LED2 off

 delay(1000); // wait for a second

16

17

18

 digitalWrite(led1Pin, LOW); // turn the LED1 off

 digitalWrite(led2Pin, HIGH); // turn the LED2 on

 delay(1000); // wait for a second

Now, we will use the function to improve the above code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

// set pin numbers:

int led1Pin = 4; // the number of the LED1 pin

int led2Pin = 5; // the number of the LED2 pin

void setup() {

 // initialize the LED pin as an output:

 pinMode(led1Pin, OUTPUT);

 pinMode(led2Pin, OUTPUT);

}

void loop() {

 setLed(HIGH, LOW); // set LED1 on, and LED2 off.

 setLed(LOW, HIGH); // set LED1 off, and LED2 on.

}

void setLed(int led1, int led2) {

 digitalWrite(led1Pin, led1); // the state of LED1 is determined by variable led1.

 digitalWrite(led2Pin, led2); // the state of LED2 is determined by variable led2.

 delay(1000); // wait for a second

}

In the sketch above, we integrate the 2 LED statements into one function void setLed(int led1, int led2), and

control two LEDs through the parameters led1 and led2.

16

17

18

19

20

void setLed(int led1, int led2) {

 digitalWrite(led1Pin, led1); // the state of LED1 is determined by variable led1.

 digitalWrite(led2Pin, led2); // the state of LED2 is determined by variable led2.

 delay(1000); // wait for a second

}

When the function above is called, we will control the two LEDs by using different parameters as below.

12

13

 setLed(HIGH, LOW); // set LED1 on, and LED2 off.

 setLed(LOW, HIGH); // set LED1 off, and LED2 on.

Verify and upload the code, then you will see the two LEDs blink alternatively.

30 Chapter 2 Two LEDs Blink www.freenove.com █

HIGH and LOW

The macro is an identifier that represents a number, a statement, or a piece of code. HIGH and LOW are

two macros. HIGH and LOW is defined in Arduino Software as below:

#define HIGH 1

#define LOW 0

In the code, a macro is used as the content defined by itself. For example, setLed (HIGH, LOW) is equivalent

to setLed (1, 0).

Using macros can enhance the readability of code and simplify code, such as INPUT, OUTPUT.

Sketch 2.1.3

In the last section of code, we used a function that integrates two similar paragraph of code. And We control

two LEDs by using two parameters. As the two LEDs are always blinking alternatively, so let's try to use one

parameter to control these two LEDs, which is achieved by conditional statements.

Now, we'll use conditional statement to improve the code above.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

// set pin numbers:

int led1Pin = 4; // the number of the LED1 pin

int led2Pin = 5; // the number of the LED2 pin

void setup() {

 // initialize the LED pin as an output:

 pinMode(led1Pin, OUTPUT);

 pinMode(led2Pin, OUTPUT);

}

void loop() {

 setLed1(HIGH); // set LED1 on, and LED2 off.

 setLed1(LOW); // set LED1 off, and LED2 on.

}

void setLed1(int led1) {

 digitalWrite(led1Pin, led1); // the state of LED1 is determined by variable led1.

 if (led1 == HIGH) // the state of LED2 is determined by variable led1.

 digitalWrite(led2Pin, LOW); // if LED1 is turned on, LED2 will be turned off.

 else

 digitalWrite(led2Pin, HIGH); // if LED1 is turned off, LED2 will be turned on.

 delay(1000); // wait for a second

}

Here, we rewrite the function so that we only need to set the state of LED1. And the state of LED2 can be set

automatically.

Verify and upload the code, then two LEDs blink alternatively.

31 Chapter 3 LED bar graph █ www.freenove.com

Chapter 3 LED bar graph

We have learned previously how to control 1 or 2 LED through Sketch on Freenove UNO board and learn

some basic knowledge of programming. Now let's try to control 10 LEDs and learn how to simplify the code.

Project 3.1 LED bar graph Display

Let us use Freenove UNO to control a bar graph LED consist of 10 LEDs.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED bar graph x1

Resistor 220Ω x10

Jumper M/M x11

32 Chapter 3 LED bar graph www.freenove.com █

Component knowledge

Let us learn about the basic features of components to use them better.

LED bar graph

LED bar graph is a component Integration consist of 10 LEDs. There are two rows of pins at its bottom. At the

bottom of the LED bar graph, there are two rows of pins, corresponding to positive and negative pole

separately. If the LED bar graph can not work in the circuit, it was probably because the connection between

positive and negative pole is wrong. Please try to reverse the LED bar graph connection.

Code knowledge

This section will use new code knowledge.

Array

Array is used to record a set of variables. An array is defined below:

1 int a[10];

"int" is the type of the array and "10" is an element of the array. This array can store 10 int types of elements

as below.

1 int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

Or there is another form that the number of elements is the size of the array:

1 int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

We can reference elements of an array as below：

1

2

3

4

int i, j;

i = a[0];

j = a[1];

a[0] = 0;

Among them, "[]" is the array index, with a[0] as the first elements in the array.

33 Chapter 3 LED bar graph █ www.freenove.com

For example, now we define an arry b[] below:

1 int b[] = {5, 6, 7, 8};

The value of each element in array b[] is as follows:

b[0] b[1] b[2] b[3]

5 6 7 8

This is just the use of one-dimensional array. And there are two-dimensional arrays, three-dimensional arrays,

and multi-dimensional arrays. Readers interested of this part can develop your own learning.

Loop

The loop statement is used to perform repetitive work such as the initialization to all the elements of an array.

1

2

while(expression)

 functionX();

When there is more than one statement to be executed, the form is as follows:

1

2

3

4

while(expression){

 functionX();

functionY();

}

The first step of the execution is judgment expression inside "()". If the result is false, the statements inside "{}"

will not be executed; if resut is ture, the statements will be executed.

1

2

3

4

int i = 0;

while (i < 2)

 i = i + 1;

i = 5;

First time: i<2, i=0 is tenable, execute i=i+1, then i=1;

Second time: i<2, i=1 is tenable, execute i=i+1, then i=2;

Third time: i<2, i=2 is not tenable, execution of loop statements is completed. Statement i=5 will be executed

next.

"do while" and "while" is similar. The difference is that the loop statements of "do while" is executed before

judging expression. The result of the judgment will decide whether or not go on the next execution:

1

2

3

do {

 functionX();

} while (expression);

"for" is another loop satement, and its form is as follows:

1

2

for (expression1; expression2; expression 3)

 functionX();

When there is more than one statement to be executed, the form is as follows:

1

2

3

4

for (expression 1; expression 2; expression 3) {

 functionX();

functionY();

}

Expression 1 is generally used to initialize variables; expression 2 is judgement which is used to decide wether

or not to execute loop statements; the expression 3 is generally used to change the value of variables.

34 Chapter 3 LED bar graph www.freenove.com █

For example:

1

2

3

4

int i = 0, j = 0;

for (i = 0; i < 2; i++)

 j++;

i = 5;

First: i=0, i<2 is tenable, execute j++, and execute i++, then i=1, j=1;

Second: i=1, i<2 is tenable, execute j++, and execute i++, then i=2, j=2;

Third times: i<2 is tenable, i=2 is not tenable. The execution of loop statements is completed. Statement i=5

will be executed next.

Operator ++, --

"i++" is equivalent to "i=i+1". And "i--" equivalent to "i=i-1".

Circuit

Let us use D3, D4, D5, D6, D7, D8, D9, D10, D11, D12 pin of Freenove UNO board to drive LED bar graph.

Schematic diagram

Hardware connection

35 Chapter 3 LED bar graph █ www.freenove.com

Sketch

Now let us complete the sketch to control LED bar graph.

Sketch 3.1.1

First, write a sketch which can achieve the LED light water.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

const int ledCount = 10; // the number of LEDs in the bar graph

// an array of pin numbers to which LEDs are attached

int ledPins[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

void setup() {

 // loop over the pin array and set them all to output:

 for (int i = 0; i < ledCount; i++) {

 pinMode(ledPins[i], OUTPUT);

 }

}

void loop() {

 // the ith LED of LED bar graph will light up in turn

 for (int i = 0; i < ledCount; i++) {

 barGraphDisplay(i);

 }

}

void barGraphDisplay(int ledOn) {

 // make the "ledOn"th LED of bar graph LED on and the others off

 for (int i = 0; i < ledCount; i++) {

 if (i == ledOn)

 digitalWrite(ledPins[i], HIGH);

 else

 digitalWrite(ledPins[i], LOW);

 }

 delay(100);

}

Firstly, let us define a read-only variable to record the number of LEDs as the number of times in the loop.

1 const int ledCount = 10; // the number of LEDs in the bar graph

Read-only variable

"const" keyword is used to define read-only variables, which is called in the same way with comen variable.

But read-only variables can be assigned only once.

36 Chapter 3 LED bar graph www.freenove.com █

Then we define an array used to store the number of pins connected to LED bar graph. So it is convenient to

manipulate arrays to modify the pin number.

3

4

// an array of pin numbers to which LEDs are attached

int ledPins[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

Use loop statement to set the pins to output mode in function setup().

6

7

8

9

10

11

void setup() {

 // loop over the pin array and set them all to output:

 for (int i = 0; i < ledCount; i++) {

 pinMode(ledPins[i], OUTPUT);

 }

}

Define a function to open a certain LED on the LED bar graph and close the other LEDs.

20

21

22

23

24

25

26

27

28

29

void barGraphDisplay(int ledOn) {

 // make the "ledOn"th LED of LED bar graph on and the others off

 for (int i = 0; i < ledCount; i++) {

 if (i == ledOn)

 digitalWrite(ledPins[i], HIGH);

 else

 digitalWrite(ledPins[i], LOW);

 }

 delay(100);

}

Finally, when the above function is called cyclically, there will be the formation of LED water effect in LED bar

graph.

13

14

15

16

17

18

void loop() {

 // make the "i"th LED of LED bar graph on and the others off in turn

 for (int i = 0; i < ledCount; i++) {

 barGraphDisplay(i);

 }

}

Verify and upload the code, then you will see the light water on the LED bar graph.

37 Chapter 3 LED bar graph █ www.freenove.com

Sketch 3.1.2

Then modify the code to create a reciprocating LED light watert.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

const int ledCount = 10; // the number of LEDs in the bar graph

// an array of pin numbers to which LEDs are attached

int ledPins[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

void setup() {

 // loop over the pin array and set them all to output:

 for (int i = 0; i < ledCount; i++) {

 pinMode(ledPins[i], OUTPUT);

 }

}

void loop() {

 // makes the "i"th LED of LED bar graph bright in turn

 for (int i = 0; i < ledCount; i++) {

 barGraphDisplay(i);

 }

 // makes the "i"th LED of LED bar graph bright in reverse order

 for (int i = ledCount; i > 0; i--) {

 barGraphDisplay(i - 1);

 }

}

void barGraphDisplay(int ledOn) {

 // make the "ledOn"th LED of LED bar graph on and the others off

 for (int i = 0; i < ledCount; i++) {

 if (i == ledOn)

 digitalWrite(ledPins[i], HIGH);

 else

 digitalWrite(ledPins[i], LOW);

 }

 delay(100);

}

We have modified the code inside the function loop() and make the LED bar graph light in order, and then

light in reverse order cyclically.

Verify and upload the code, then you will see the reciprocating LED light water on LED bar graph.

38 Chapter 4 LED Blink Smoothly www.freenove.com █

Chapter 4 LED Blink Smoothly

In the previous chapter, we have used Sketch on the Freenove UNO board to control up to 10 LED blink and

learned some basic knowledge of programming. Now, let us try to make LED emit different brightness of light.

Project 4.1 LEDs Emit Different Brightness

Now, let us use Freenove UNO board to make 4 LED emit different brightness of light.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED x4

Resistor 220Ω x4

Jumper M/M x5

39 Chapter 4 LED Blink Smoothly █ www.freenove.com

Circuit knowledge

At first, let us learn the kowledge how to use the circuit to make LED emit different brightness of light,

PWM

PWM, namely Width Modulation Pulse, is a very effective technique for using digital signals to control analog

circuits. The commen processors can not directly output analog signals. PWM technology make it very

convenient to achieve this purpose.

PWM technology uses digital pins to send certain frequency of square waves, that is, the output of high level

and low level last for a period alternately. The total time for each set of high level and low level is generally

fixed, which is called period (the reciprocal of the period is frequency). Output high time is generally called

pulse width, and the percentage of pulse width is called duty cycle.

The longer the output of high level last, the larger the duty cycle and the larger the corresponding voltage in

analog signal. The following figures show how the analogs ignal voltage vary between 0V-5V (high level is

5V) corresponding to the pulse width 0%-100%:

The larger PWM duty ratio, the lager the output power. So we can use PWM to control the brightness of LED,

the speed of DC motor and so on.

40 Chapter 4 LED Blink Smoothly www.freenove.com █

Code knowledge

We will use new code knowledge in this section.

Return value of function

We have learned and used the function without return value, now we will learn how to use the function with

return value. A function with return value is shown as follow:

1

2

3

4

int sum(int i, int j) {

 int k = i + j;

 return k;

}

"int" declare the type of return value of the function sum(int i, int j). If the tape of the return value is void, the

function does not return a value.

One function can only return one value. It is necessary to use the return statement to return the value of

function.

When the return statement is executed, the function will return immediately regardless of code behind return

statement in this function.

A function with return value is called as follows:

1

2

int a = 1, b = 2, c = 0;

c = sum(1, 2); // after the execution the value of c is 3

A function with a return value can also be used as a parameter of functions, for example:

1 delay(sum(100, 200));

It is equivalent to the following code:

1 delay(300);

return

We have learned the role of the return statement in a function with a return value. It can also be used in

functions without return value, and there is no data behind the return keyword:

1 return;

In this case, when the return statement is executed, the function will immediate end end its execution rather

than return in the end of the function. For example:

 …

21

22

23

24

25

…

…

delay(500);

blink();

delay(500);

blink();

delay(500);

…

 31

32

33

34

35

36

void blink() {

 digitalWrite(13, HIGH);

 delay(1000);

return;

 digitalWrite(13, LOW);

 delay(1000);

}

41 Chapter 4 LED Blink Smoothly █ www.freenove.com

Circuit

Use D5, D6, D9, D10 pin on Freenove UNO board to drive 4 LEDs.

Schematic diagram

Hardware connection

Sketch

Sketch 4.1.1

Now let us use sketch to make 4 LEDs emit different brightness of light. We will transmit signal to make the 4

ports connected to LEDs output the PWM waves with duty cycle of 2%, 10%, 50%, and 100% to let the LED emit

different brightness of the light.

1

2

3

4

5

6

// set pin numbers:

int ledPin1 = 5, // the number of the LED1 pin

 ledPin2 = 6, // the number of the LED2 pin

 ledPin3 = 9, // the number of the LED3 pin

 ledPin4 = 10; // the number of the LED4 pin

42 Chapter 4 LED Blink Smoothly www.freenove.com █

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

void setup() {

 // initialize the LED pin as an output:

 pinMode(ledPin1, OUTPUT);

 pinMode(ledPin2, OUTPUT);

 pinMode(ledPin3, OUTPUT);

 pinMode(ledPin4, OUTPUT);

}

void loop()

{

 // set the ports output PWM waves with differrent duty cycle

 analogWrite(ledPin1, map(2, 0, 100, 0, 255));

 analogWrite(ledPin2, map(10, 0, 100, 0, 255));

 analogWrite(ledPin3, map(50, 0, 100, 0, 255));

 analogWrite(ledPin4, map(100, 0, 100, 0, 255));

}

After the initialization of the 4 ports, we set the ports to output PWM waves with different duty cycle. Take

ledPin1 as an example, firstly map 2% to the 0-255 range, and then output the PWM wave with duty cycle of

2%,

1 analogWrite(ledPin1, map(2, 0, 100, 0, 255));

analogWrite(pin, value)

Arduino Software provides the function analogWrite (pin, value) which can make ports directly output PWM

waves. Only the digital pin marked "~" symbol on The UNO board can use this function to output PWM

waves. In the function analogWrite(pin, value), the parameter "pin" specifies the port used to output PWM

wave. The range of value is 0-255, which represent the duty ratio 0%-100%.

In order to use this function, we need to set the port to output mode.

map(value, fromLow, fromHigh, toLow, toHigh)

This function is used to remap a value, which will return a new value whose percent in the rang of toLow-

toHigh is equat to the percent of "value" accouting for in range of fromLow-fromHigh. Such as 1 is in the

range 0-1 in the maximum and the maximum value in the scope of 0-2 is 2, that is, the result value map

(1, 0, 1, 0, 2) is 2.

Verify and upload the code, then you will see the 4 LEDs emit light with different brightness.

43 Chapter 4 LED Blink Smoothly █ www.freenove.com

Project 4.2 LED Blink Smoothly

We will learn how to mke a LED blink smoothly, that is, breathing light.

Component list

The Component list is basically the same as those in last section. And we need to get rid of a few LEDs and

resistors.

Circuit

Remove some LEDs and resistors connected to D6, D9, D10 pin on Freenove UNO board in circuit of the last

section.

Schematic diagram

Hardware connection

44 Chapter 4 LED Blink Smoothly www.freenove.com █

Sketch

Sketch 4.2.1

Now complete sketch to make brightness of LED change from dark to bright, and then from the bright to

dark. That is to make the duty cycle of the PWM wave change from 0%-100%, and then from 100%-0% cyclically.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// set pin numbers:

int ledPin = 5; // the number of the LED pin

void setup() {

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

}

void loop() {

 // call breath() cyclically

 breath(ledPin, 6);

 delay(500);

}

void breath(int ledPin, int delayMs) {

 for (int i = 0; i <= 255; i++) { // "i" change from 0 to 255

 analogWrite(ledPin, i); // corespongding duty cycle change from 0%-100%

 delay(delayMs); // adjust the rate of change of brightness

 }

 for (int i = 255; i >= 0; i--) { // "i" change from 255 to 0

 analogWrite(ledPin, i); // corespongding duty cycle change from 0%-100%

 delay(delayMs); // adjust the rate of change in brightness

 }

}

Through two cycles, the duty cycle of the PWM wave changes from 0% to 100%, and then from 100% to 0%

cyclically. delay(ms) function is used to control the rate of change in the "for" cycle, and you can try to modify

the parameters to modify the rate of change in brightness.

Verify and upload the code, then you will see that the brightness of the LED changes from dark to light, and

from the light to dark cyclically.

45 Chapter 5 Control LED Through Push Button █ www.freenove.com

Chapter 5 Control LED Through Push Button

From previous chapter, we have use Freenove UNO to output signals to make 10 LEDs flash, and make one

LED emit different brightness. Now, let's learn how to get the input signal.

Project 5.1 Control LED Through Push Button

We will use the Freenove UNO to get the status of the push button, and show that through LED.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED x1

Resistor

220Ω x1

Resistor

10kΩ x2

Push button x1

Jumper M/M x4

46 Chapter 5 Control LED Through Push Button www.freenove.com █

Circuit knowledge

Connection of Push Button

In Chapter 1, we connect push button directly to power line of the circuit to control the LED to light on or off.

In digital circuits, we need to use the push button as the input signal. The recommended connection is as

follows:

In the above circuit diagram, when the button is not pressed, 5V (high level) will be detected by UNO port;

and 0V (low level) when the button is pressed. The role of Resistor R2 here is to prevent the port from being

set to output high level by accident, which could be connected directly to the cathode and cause a short

circuit when the button is pressed.

The following diagram shows another connection, in which the level detected by UNO port is opposite to

above diagram, when the button is pressed or not.

47 Chapter 5 Control LED Through Push Button █ www.freenove.com

Circuit

Use D12 of Freenove UNO to detect the status of push button, and D9 to drive LED.

Schematic diagram

Hardware Connection

48 Chapter 5 Control LED Through Push Button www.freenove.com █

Sketch

Sketch 5.1.1

Now, write code to detect the state of push button, and show that through LED.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int buttonPin = 12; // the number of the push button pin

int ledPin = 9; // the number of the LED pin

void setup() {

 pinMode(buttonPin, INPUT); // set push button pin into input mode

 pinMode(ledPin, OUTPUT); // set LED pin into output mode

}

void loop() {

 if (digitalRead(buttonPin) == HIGH) // if the button is not pressed

 digitalWrite(ledPin, LOW); // switch off LED

 else // if the button is pressed

 digitalWrite(ledPin, HIGH); // switch on LED

}

After the port is initialized, the LED will be switched on or off in accordance with the state of the pin connected

to push button.

digitalRead(pin)

Arduino Software provides a function digitalRead(pin) to obtain the state of the port pin. The return value

is HIGH or LOW, that is, high level or low level.

Verify and upload the code, press the button, then LED lights up; loosen the button, then LED lights off.

49 Chapter 5 Control LED Through Push Button █ www.freenove.com

Project 5.2 Change LED State by Push Button

In the last section, we have finished the experiment that LED lights on when push button is pressed, and off

as soon as it's released. Now, let's try something new: each time you pressed the button down, the state of

LED will be changed.

Component List

Same with the last section.

Circuit knowledge

Debounce for push button

When push button is pressed, the potential won't transfer from one state to another state ideally. In fact, it

will occur a continuous bounce process before it becomes final stable state.

If you detect the state of push button, there may be repeated "press" and "release" detected during one

process of pressing. So it is necessary to eliminate the influence caused by the bounce. Here is the most direct

and effective way: when the changed signals are received by Freenove UNO for the first time, the program

does not operate immediately, just waits for a certain time to skip the bounce process and confirm the final

state of push button.

Circuit

Same with the last section.

Ideal state

virtual state

press stable release stable

50 Chapter 5 Control LED Through Push Button www.freenove.com █

Sketch

Sketch 5.2.1

Now, write the code to detect the state of push button. Every time you pressed, the state of LED will be

changed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

int buttonPin = 12; // the number of the push button pin

int ledPin = 9; // the number of the LED pin

boolean isLighting = false; // define a variable to save the state of LED

void setup() {

 pinMode(buttonPin, INPUT); // set push button pin into input mode

 pinMode(ledPin, OUTPUT); // set LED pin into output mode

}

void loop() {

 if (digitalRead(buttonPin) == LOW) { // if the button is pressed

 delay(10); // delay for a certain time to skip the bounce

 if (digitalRead(buttonPin) == LOW) { // confirm again if the button is pressed

 reverseLED(); // reverse LED

 while (digitalRead(buttonPin) == LOW); // wait for releasing

 delay(10); // delay for a certain time to skip bounce when the button is released

 }

 }

}

void reverseLED() {

 if (isLighting) { // if LED is lighting,

 digitalWrite(ledPin, LOW); // switch off LED

 isLighting = false; // store the state of LED

 }

 else { // if LED is off,

 digitalWrite(ledPin, HIGH); // switch LED

 isLighting = true; // store the state of LED

 }

}

We use a function reverseLED () to change the state of the LED.

When judging the push button state, if it is detected "pressed down", wait for a certain time to detect again

to eliminate the effect of bounce. When confirmed, it starts to wait for the push button to be released, and

waits for a certain time to eliminate the effect of bounce after it is released.

Verify and upload the code, then each time you press the button, LED changes its state accordingly.

Sketch 5.2.2

Beginners can upload Sketch_5.2.2 to try not dealing with the push button bounce and see what happens.

51 Chapter 6 Serial █ www.freenove.com

Chapter 6 Serial

Earlier, we already try to output signals to LED, and get the input signal of push button. Now, we can try a

more advanced means of communication—serial communication.

Project 6.1 Send data through Serial

We will use the serial port on Freenove UNO to send data to computer.

Component list

Freenove UNO x1

USB cable x1

52 Chapter 6 Serial www.freenove.com █

Code knowledge

Bit and Byte

As mentioned earlier, the computer uses a binary signal. A binary signal is called 1 bit, and 8 bits organize in

order is called 1 byte. Byte is the most basic unit of storage and communications for processors. 1 byte can

represent a 2^8=256 numbers, that is, 0-255. For example:

As to binary number 10010110, "0" usually present the lowest in code.

Sequence 7 6 5 4 3 2 1 0

Number 1 0 0 1 0 1 1 0

When a binary number need to be converted to decimal number, first, the nth number of it need be multiplied

by n power of 2, then sum all multiplicative results. Take 10010110 as an example:

1*2^7+0*2^6+0*2^5+1*2^4+0*2^3+1*2^2+1*2^1+0*2^0=150

We can make decimal number divided by 2 to convert it to binary number. Quotient continuously obtained

divided by 2 until quotient is zero. Arrange all remainders from right to left in a line. Then we complete the

conversion. For example:

 Remainder Sequence

2 150 ………… 0 0

2 75 ………… 1 1

2 37 ………… 1 2

2 18 ………… 0 3

2 9 ………… 1 4

2 4 ………… 0 5

2 2 ………… 0 6

2 1 ………… 1 7

 0

The result is 10010110.

53 Chapter 6 Serial █ www.freenove.com

Circuit knowledge

Serial and parallel communication

Serial communication uses one data cable to transfer data one bit by another in turn. Parallel

communication means that the data is transmitted simultaneously on multiple cables. Serial communication

takes only a few cables to exchange information between systems, especially suitable for computers to

computer, long distance communication between computers and peripherals. Parallel communication is

faster, but with more cables and the high cost, so it is not appropriate for long distance communication.

Parallel communication Serial communication

Serial communication

Serial communication generally refers to the Universal Asynchronous Receiver/Transmitter (UART). And it is

commonly used in electronic circuit communication. It has two communication lines, one is responsible for

sending data (TX line) and another for receiving data (RX line). The serial communication connections two

devices use is as follows:

Device 1 Device 2

Before serial communication starts, the baud rate in both sides must be the same. Only use the same baud

rate can the communication between devices be normal. The baud rates commonly used is 9600 and

115200.

Serial port on Arduino

Freenove UNO has integrated USB to serial transfer, could communicates with computer when USB cable

get connected to it. Arduino Software also uploads code for Freenove UNO through the serial connection.

Computer identifies serial devices connected to your computer as COMx. We can use the Serial Monitor

window of Arduino Software to communicate with Freenove UNO, connect Freenove UNO to computer

through the USB cable, choose the right device, and then click the Serial Monitor icon to open the Serial

Monitor window.

RX

TX

RX

TX

54 Chapter 6 Serial www.freenove.com █

Interface of Serial Monitor window is as follows. If you can't open it, make sure Freenove UNO had been

connected to the computer, and choose the right serial port in the menu bar "Tools".

Circuit

Connect Freenove UNO to the computer with USB cable.

Sketch

Sketch 6.1.1

Now, write code to send some text to the Serial Monitor window

1

2

int counter = 0; // define a variable as a data sending to serial port

Title bar

Data-

sending

area

Data-

receiving

area

Data-

sending

button

Configure

bar

55 Chapter 6 Serial █ www.freenove.com

3

4

5

6

7

8

9

10

11

12

13

14

void setup() {

 Serial.begin(9600); // initialize the serial port, set the baud rate to 9600

 Serial.println("UNO is ready!"); // print the string "UNO is ready!"

}

void loop() {

 // print variable counter value to serial

 Serial.print("counter:"); // print the string "counter:"

 Serial.println(counter); // print the variable counter value

 delay(500); // wait 500ms to avoid cycling too fast

 counter++; // variable counter increases 1

}

setup() function initializes the serial port and send the string "UNO is ready!".

Then continuously sends variable counter values in the loop () function.

Serial class

Class is a C++ language concept. Arduino Software supports C++ language, which is a language extension.

We don't explain specifically the concept here, only describes how to use it. If you are interested, you can

learn that by yourself. Serial is a class name, which contains variables and functions. You can use the "."

operational character to visit class variables and functions, such as:

Serial.begin(speed): Initialize serial port, the parameter is the serial port baud rate;

Serial.print(val): Send string, the parameter here is what you want to send;

Serial.println(val): Send newline behind string.

Verify and upload the code, open the Serial Monitor, then you'll see data sent from UNO.

If it is not displayed correctly, check the Serial Monitor whether configuration in the lower right corner of the

window is correct.

56 Chapter 6 Serial www.freenove.com █

Project 6.2 Receive Data through Serial Port

From last section, we use Serial port on Freenove UNO to send data to a computer, now we will use that to

receive data from computer.

Component list

Same with last section.

Code knowledge

Interruption

Interruption is controller's response to an event. The event causing an interruption is interruption source. We'll

illustrate this interruption concept. If you're watching TV, while water is heating, then you have to check

whether the water is boiling or not from time to time, so you can't concentrate on watching TV. But

interruption can work as warning device for kettle, and before the water is boiling, you can focus on watching

TV until a beep warning comes out, then go to handle it.

Advantages of interruption here: Processor won't need to check whether the event has happened every now

and then., but when the event occurs, it informs the controller immediately. When an interruption occurs, the

processor will jump to the interrupt function to handle interruption events, then return to the interruption

place after finishing it and go on this program.

Circuit

Same with last section.

Main program

Interruption event

Interruption program

57 Chapter 6 Serial █ www.freenove.com

Sketch

Sketch 6.2.1

Now, write code to receive the characters from Serial Monitor window, and send it back.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

char inChar; // define a variable to store characters received from serial port

void setup() {

 Serial.begin(9600); // initialize serial port, set baud rate to 9600

 Serial.println("UNO is ready!"); // print the string "UNO is ready!"

}

void loop() {

 if (Serial.available()) { // judge whether data has been received

 inChar = Serial.read(); // read one character

 Serial.print("UNO received:"); // print the string "UNO received:"

 Serial.println(inChar); // print the received character

 }

}

In the setup() function, we initialize the serial port and send the string "UNO is ready!". Then, the loop()

function will continuously detect whether there are data needs to be read. if so, read the character and send

it back.

Serial Class

Serial.available(): return bytes of data that need to be read by serial port;

Serial.read(): return 1 byte of data that need to be read by serial port.

Verify and upload the code, open the Serial Monitor, write character in sending area, click Send button, then

you'll see information returned from UNO.

58 Chapter 6 Serial www.freenove.com █

char type

char type variable can represent a character, but char type cannot store characters directly. It stores

numbers to replace characters. char type occupies 1-byte store area, and use a value 0-127 to correspond

to 128 characters. The corresponding relation between number and character is ruled by ASCII table. For

more details of ASCII table, please refer to the appendix of this book.

Example: Define char aChar = 'a', bChar = '0', then the decimal value of aChar is 97, bChar will be 48.

Sketch 6.2.2

When serial port receives data, it can trigger an interrupt event, and enter into the interrupt handling function.

Now we use an interrupt to receive information from Serial Monitor window, and sends it back. To illustrate

the interrupt does not influence the program's running, we will constantly send changing number in loop ()

function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

char inChar; // define a variable to store character received from serial port

int counter = 0; // define a variable as the data sent to Serial port

void setup() {

 Serial.begin(9600); // initialize serial port and set baud rate to 9600

 Serial.println("UNO is ready!"); // print the string "UNO is ready!"

}

void loop() {

 // Print value of variable counter to serial

 Serial.print("counter:"); // print the string "counter:"

 Serial.println(counter); // print the value of variable "counter"

 delay(1000); // wait 1000ms to avoid cycling too fast

 counter++; // variable "counter" increases 1

}

void serialEvent() {

 if (Serial.available()) { // judge whether the data has been received

 inChar = Serial.read(); // read one character

 Serial.print("UNO received:"); // print the string "UNO received:"

 Serial.println(inChar); // print the received character

 }

}

void serialEvent () function here is the serial port interrupt function. When serial receives data, processor will

jump to this function, and return to the original interrupt place to proceed after execution. So loop () function's

running is not affected.

59 Chapter 6 Serial █ www.freenove.com

Verify and upload the code, open the Serial Monitor, then you'll see the number constantly sent from UNO.

Fill character in the sending area, and click the Send button, then you'll see the string returned from UNO.

60 Chapter 6 Serial www.freenove.com █

Project 6.3 Application of Serial

We will use the serial port on Freenove UNO to control one LED.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED x1

Resistor 220Ω x1

Jumper M/M x2

61 Chapter 6 Serial █ www.freenove.com

Circuit

Here we will use D11 pin of Freenove UNO to output PWM to drive 1 LED.

Schematic diagram

Hardware connection

Sketch

Sketch 6.3.1

Code is basically the same with Sketch 6.2.1. But after receiving the data, Freenove UNO will convert it into

PWM duty cycle from output port.

1

2

3

4

5

6

7

8

9

10

int inInt; // define a variable to store the data received from serial

int counter = 0; // define a variable as the data sending to serial

int ledPin = 11; // the number of the LED pin

void setup() {

 pinMode(ledPin, OUTPUT); // initialize the LED pin as an output

 Serial.begin(9600); // initialize serial port, set baud rate to 9600

 Serial.println("UNO is ready!"); // print the string "UNO is ready!"

}

62 Chapter 6 Serial www.freenove.com █

11

12

13

14

15

16

17

18

19

void loop() {

 if (Serial.available()) { // judge whether the data has been received

 inInt = Serial.parseInt(); // read an integer

 Serial.print("UNO received:"); // print the string "UNO received:"

 Serial.println(inInt); // print the received character

 // convert the received integer into PWM duty cycle of ledPin port

 analogWrite(ledPin, constrain(inInt, 0, 255));

 }

}

When serial receives data, it converts the data into PWM duty cycle of output port, and then causes LED to

emit light with corresponding brightness.

Serial Class

Serial.parseInt(): Receive an int type number as the return value.

constrain(x, a, b)

Limit x between a and b，if x<a, return a; if x>b, return b.

Verify and upload the code, open the Serial Monitor, and put a number in the range 0-255 into the sending

area and click the Send button. Then you'll see information returned from UNO, meanwhile, LED can emit

light with different brightness according to the number you send.

63 Chapter 7 ADC █ www.freenove.com

Chapter 7 ADC

Before, we have learned the digital ports of Freenove UNO, and tried the output and input signals. Now, let's

learn how to use analog ports.

Project 7.1 ADC

ADC is used to convert analog signals into digital signals. Control chip on Freenove has integrated this

function. Now let us try to use this function to convert analog signals into digital signals.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Rotary potentiometer x1

Jumper M/M x3

64 Chapter 7 ADC www.freenove.com █

Circuit knowledge

ADC

ADC, Analog-to-Digital Converter, is a device used to convert analog to digital. Freenove UNO has a 10 bits

ADC, that means the resolution is 2^10=1024, and the range (here is 5V) will be divided equally into 1024

parts. The analog of each section corresponds to one ADC value. So the more bits ADC has, the denser the

partition of analog will be, also the higher precision of the conversion will be.

Subsection 1: the analog in rang of 0V-5/1024V corresponds to digital 0;

Subsection 2: the analog in rang of 5 /1024V-2*5/1024V corresponds to digital 1;

…

The following analog will be divided accordingly.

Component knowledge

Potentiometer

Potentiometer is a resistive component with three terminal parts and its resistance can be adjusted in

accordance with according to a certain change rule. Potentiometer is often made up by resistance and

removable brush. When the brush moves along the resistor body, there will be resistance or voltage that has

a certain relationship with displacement on the output side (3). Figure shown below is the linear sliding

potentiometer and its symbol.

65 Chapter 7 ADC █ www.freenove.com

Pin 1 and pin 2 of the potentiometer is connected to two ends of a resistor body respectively, and pins 3 is

connected to a brush. When the brush moves from pin 1 to pin 2, resistance between pin 1 and pin 3 will

increase up to max resistance of the resistor body linearly, and resistance between pin 2 and pin 3 will decrease

down to 0 linearly.

In the circuit, the two sides of resistor body are often connected to the positive and negative electrodes of a

power respectively. When you slide the brush of pin 3, you can get a certain voltage in the range of negative

voltage to positive voltage of the power supply.

Rotary potentiometer

Rotary potentiometer and linear potentiometer have similar function; the only difference is: the resistance is

adjusted through rotating the potentiometer.

66 Chapter 7 ADC www.freenove.com █

Circuit

Use A0 port on Freenove UNO to detect the voltage of rotary potentiometer.

Schematic diagram

Hardware connection

67 Chapter 7 ADC █ www.freenove.com

Sketch

Sketch 7.1.1

Now, write code to detect the voltage of rotary potentiometer, and send the data to Serial Monitor window

of Arduino Software through serial port.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int adcValue; // Define a variable to save ADC value

float voltage; // Define a variable to save the calculated voltage value

void setup() {

 Serial.begin(9600); // Initialize the serial port and set the baud rate to 9600

 Serial.println("UNO is ready!"); // Print the string "UNO is ready!"

}

void loop() {

 adcValue = analogRead(A0); // Convert analog of A0 port to digital

 voltage = adcValue * (5.0 / 1023.0);// Calculate voltage according to digital

 // Send the result to computer through serial

 Serial.print("convertValue:");

 Serial.println(adcValue);

 Serial.print("Voltage:");

 Serial.println(voltage);

 delay(500);

}

From the code, we get the ADC value of A0 pin, then convert it into voltage and sent to the serial port.

Verify and upload the code, open the Serial Monitorto, then you will see the original ADC value and converted

voltage sent from UNO.

Turn the rotary potentiometer shaft, and you can see the voltage change.

68 Chapter 7 ADC www.freenove.com █

Project 7.2 Control LED by Potentiometer

In the last section, we have finished reading ADC value and convert it into voltage. Now, we will try to use

potentiometer to control the brightness of LED.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Rotary potentiometer

x1

LED x1

Resistor 220Ω

x1

Jumper M/M x5

69 Chapter 7 ADC █ www.freenove.com

Circuit

Use A0 on Freenove UNO to detect the voltage of rotary potentiometer, and use D9 to control one LED.

Schematic diagram

Hardware connection

70 Chapter 7 ADC www.freenove.com █

Sketch

Sketch 7.2.1

Now, write the code to detect the voltage of rotary potentiometer, and control LED to emit light with different

brightness according to that.

1

2

3

4

5

6

7

8

9

10

11

12

int adcValue; // Define a variable to save the ADC value

int ledPin = 9; // Use D9 on Freenove UNO to control the LED

void setup() {

 pinMode(ledPin, OUTPUT); // Initialize the LED pin as an output

}

void loop() {

 adcValue = analogRead(A0); // Convert the analog of A0 port to digital

// Map analog to the 0-255 range, and works as PWM duty cycle of ledPin port

 analogWrite(ledPin, map(adcValue, 0, 1023, 0, 255));

}

In the code, we get the ADC value of A0 pin and map it to PWM duty cycle of LED pin port. According to

different LED brightness, we can see the voltage changes easily.

Verify and upload the code, turn the rotary potentiometer shaft, then you will see the LED brightness changes.

71 Chapter 7 ADC █ www.freenove.com

Project 7.3 Control LED through Photoresistor

In the last section, we have finished reading ADC value and converted it into LED brightness. There are many

components, especially the sensor whose output is analog. Now, we will try to use photoresistor to measure

the brightness of light.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Photoresistor

x1

LED x1

Resistor

10kΩ x1

Resistor

220Ω x1

Jumper M/M x5

72 Chapter 7 ADC www.freenove.com █

Component knowledge

Photoresistor

Photoresistor is a light sensitive resistor. When the strength that light casts onto the photoresistor surface is

not the same, resistance of photoresistor will change. With this feature, we can use photoresistor to detect

light intensity. Photoresistor and symbol are as follows.

The circuit below is often used to detect the change of photoresistor resistance:

In the above circuit, when photoresistor resistance changes due to light intensity, voltage between

photoresistor and resistor R1 will change, so light's intensity can be obtained by measuring the voltage.

73 Chapter 7 ADC █ www.freenove.com

Circuit

Use A0 port on Freenove UNO to detect the voltage of rotary potentiometer, and use D9 to control one LED.

Schematic diagram

Hardware connection

74 Chapter 7 ADC www.freenove.com █

Sketch

Sketch 7.3.1

Now, write code to detect the voltage of rotary potentiometer, and control LED to emit light with different

brightness according to that.

1

2

3

4

5

6

7

8

9

10

11

12

int convertValue; // Define a variable to save the ADC value

int ledPin = 9; // The number of the LED pin

void setup() {

 pinMode(ledPin, OUTPUT); // Set ledPin into output mode

}

void loop() {

 convertValue = analogRead(A0); // Read analog voltage value of A0 port, and save

 // Map analog to the 0-255 range, and works as ledPin duty cycle setting

 analogWrite(ledPin, map(convertValue, 0, 1023, 0, 255));

}

In the code, we get the ADC value of A0 pin, map that to PWM duty cycle of LED pin port. According to the

LED brightness, we can see the voltage changes easily.

Verify and upload the code, cover photoresistor with your hand, then you can see the LED brightness changes.

75 Chapter 8 RGB LED █ www.freenove.com

Chapter 8 RGB LED

Before, we have learned to apply the analog port and ADC of Freenove UNO. Now, we'll use ADC to control

RGB LED.

Project 8.1 Control RGB LED through Potentiometer

RGB LED has three different-color LED inside, and we will use 3 potentiometers to control these 3 LEDs to

emit light with different brightness, and observe what will happen.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Rotary potentiometer

x3

RGB LED x1

Resistor 220Ω

x3

Jumper M/M x15

76 Chapter 8 RGB LED www.freenove.com █

Component knowledge

RGB LED

RGB LED has integrated 3 LEDs that can respectively emit red, green and blue light, and it has 4 pins. The long

pin (1) is the common port, that is, 3 LED 's cathode or anode. The RGB LED with common anode and its

symbol are as follows. By controlling these 3 LED to emit light with different brightness, we can make RGB

LED emit various colors of light.

Red, green, and blue light are called tricolor light. When you combine these three primary-color light with

different brightness, it can produce almost all visible light. Computer screens, single pixel of cell phone screen,

neon, and etc. are working through this principle.

We know from previous section that, UNO controls LED to emit a total 256(0-255) different brightness by

PWM. So, through the combination of three different colors of LED, RGB LED can emit 256^3=16777216

Colors, 16Million colors.

Red

ddd

turquoise

Yellow

Blude Green

magenta

White

77 Chapter 8 RGB LED █ www.freenove.com

Circuit

Use A0, A1, A2 port of Freenove UNO to detect the voltage of rotary potentiometer, and control RGB LED by

D9, D10, D11.

Schematic diagram

Hardware connection

78 Chapter 8 RGB LED www.freenove.com █

Sketch

Sketch 8.1.1

Now, write code to detect the voltage of these three rotary potentiometers, and convert that into PWM duty

cycle to control 3 LED inside the RGB LED.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// set pin numbers:

int ledPinR = 11; // the number of the LED R pin

int ledPinG = 10; // the number of the LED G pin

int ledPinB = 9; // the number of the LED B pin

void setup() {

 // initialize the LED pin as an output:

 pinMode(ledPinR, OUTPUT);

 pinMode(ledPinG, OUTPUT);

 pinMode(ledPinB, OUTPUT);

}

void loop() {

 int adcValue; // Define a variable to save the ADC value

// Convert analog of A0 port into digital, and work as PWM duty cycle of ledPinR port

 adcValue = analogRead(A0);

 analogWrite(ledPinR, map(adcValue, 0, 1023, 0, 255));

// Convert analog of A1 port into digital, and work as PWM duty cycle of ledPinG port

 adcValue = analogRead(A1);

 analogWrite(ledPinG, map(adcValue, 0, 1023, 0, 255));

// Convert analog of A2 port into digital, and work as PWM duty cycle of ledPinB port

 adcValue = analogRead(A2);

 analogWrite(ledPinB, map(adcValue, 0, 1023, 0, 255));

}

In the code, we get the voltage of three rotary potentiometers, and convert that into PWM duty cycle to

control these three LED of the RGB LED to emit light with different brightness.

Verify and upload the code, turn the three rotary potentiometer shaft, then you can see the LED light

changes in color and brightness.

79 Chapter 8 RGB LED █ www.freenove.com

Project 8.2 Colorful LED

From previous section, we have finished controlling the RGB LED to emit light with different color and

brightness through three potentiometers. Now, we will try to make RGB LED emit colorful light automatically.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

RGB LED x1

Resistor 220Ω x3

Jumper M/M x4

80 Chapter 8 RGB LED www.freenove.com █

Circuit

Use D9, D10, D11 of Freenove UNO to control RGB LED.

Schematic diagram

Hardware connection

81 Chapter 8 RGB LED █ www.freenove.com

Sketch

Sketch 8.2.1

Now, write code to generate three random number, and convert that into PWM duty cycle to control these

three LED of RGB LED.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// set pin numbers:

int ledPinR = 11; // the number of the LED R pin

int ledPinG = 10; // the number of the LED G pin

int ledPinB = 9; // the number of the LED B pin

void setup() {

 // initialize the LED pin as an output:

 pinMode(ledPinR, OUTPUT);

 pinMode(ledPinG, OUTPUT);

 pinMode(ledPinB, OUTPUT);

}

void loop() {

// Generate three random numbers between 0-255 as the output PWM duty cycle of ledPin

 rgbLedDisplay(random(256), random(256), random(256));

 delay(500);

}

void rgbLedDisplay(int red, int green, int blue) {

 // Set three ledPin to output the PWM duty cycle

 analogWrite(ledPinR, constrain(red, 0, 255));

 analogWrite(ledPinG, constrain(green, 0, 255));

 analogWrite(ledPinB, constrain(blue, 0, 255));

}

In the code, we create three random number, and convert that into PWM duty cycle, controlling these three

LED of RGB LED to emit light with different brightness. At regular intervals, a new random number will be

created, so RGB LED will start flashing light with different colors and brightness.

random(min, max)

random (min, max) function is used to generate random number, and it will return a random value in the

range (min, Max-1).

You can also use random (max) function, the function set the minimum value into 0 by default, and returns

a random value in the range (0, Max-1).

Verify and upload the code, then RGB LED starts flashing with different colors and brightness.

82 Chapter 9 Buzzer www.freenove.com █

Chapter 9 Buzzer

Before, we have used Freenove UNO and basic electronic components to carry out a series of interesting

projects. Now, let's learn how to use some integrated electronic components and modules. These modules

are usually integrated with a number of electronic components, so it has special features and uses.

In this chapter, we'll use a sounding module, buzzer. It has two types: active and passive buzzer.

Project 9.1 Active Buzzer

First, let's study some knowledge about active buzzer.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Jumper M/M x6

NPN transistorx1

Active buzzer x1

Push button x1

Resistor 1kΩ x1

Resistor 10kΩ x2

83 Chapter 9 Buzzer █ www.freenove.com

Component knowledge

Transistor

Transistor, the full name: semiconductor transistor, is a semiconductor device that controls current. Transistor

can be used to amplify weak signal, or works as a switch. It has three electrodes(PINs): base (b), collector (c)

and emitter (e). When there is current passing between "be", "ce" will allow several-fold current (transistor

magnification) pass, at this point, transistor works in the amplifying area. When current between "be" exceeds

a certain value, "ce" will not allow current to increase any longer, at this point, transistor works in the saturation

area. Transistor has two types shown below: PNP and NPN,

PNP transistor NPN transistor

(The transistor marked 8550 is PNP, and 8050 is NPN.)

According to the transistor's characteristics, it is often used as a switch in digital circuits. For micro-controller's

capacity of output current is very weak, we will use transistor to amplify current and drive large-current

components.

Buzzer

Buzzer is a sounding component, which is widely used in electronic devices such as calculator, electronic

warning clock, alarm. Buzzer has active and passive type. Active buzzer has oscillator inside, and it will make

a sound as long as it is supplied with power. Passive buzzer requires external oscillator signal (generally use

PWM with different frequency) to make a sound.

Active buzzer Passive buzzer

(A white label is attached to the active buzzer)

Active buzzer is easy to use. Generally, it can only make a specific frequency of sound. Passive buzzer

requires an external circuit to make a sound, but it can be controlled to make a sound with different

frequency. The resonant frequency of the passive buzzer is 2kHz, which means the passive buzzer is loudest

when its resonant frequency is 2kHz.

84 Chapter 9 Buzzer www.freenove.com █

Buzzer needs larger current when it works. But generally, microcontroller port cannot provide enough current

for that. In order to control buzzer by UNO, transistor can be used to drive a buzzer indirectly.

When use NPN transistor to drive buzzer, we often adopt the following method. If UNO pin outputs high level,

current will flow through R1, the transistor gets conducted, and the buzzer make a sound. If UNO pin outputs

low level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

When use PNP transistor to drive buzzer, we often adopt the following method. If UNO pin outputs low level,

current will flow through R1, the transistor gets conducted, buzzer make a sound. If UNO pin outputs high

level, no current flows through R1, the transistor will not be conducted, and buzzer will not sound.

85 Chapter 9 Buzzer █ www.freenove.com

Circuit

Use D12 port of Freenove UNO to detect the state of push button, and D9 to drive active buzzer.

Schematic diagram

Hardware connections

86 Chapter 9 Buzzer www.freenove.com █

Sketch

Sketch 9.1.1

Now, write code to detect the state of push button, and drive active buzzer to make a sound when it is pressed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int buttonPin = 12; // the number of the push button pin

int buzzerPin = 9; // the number of the buzzer pin

void setup() {

 pinMode(buttonPin, INPUT); // Set push button pin into input mode

 pinMode(buzzerPin, OUTPUT); // Set Buzzer pin into output mode

}

void loop() {

 if (digitalRead(buttonPin) == HIGH)// If the pin is high level, the button is not pressed.

 digitalWrite(buzzerPin, LOW); // Turn off Buzzer

 else // The button is pressed, if the pin is low level

 digitalWrite(buzzerPin, HIGH); // Turn on Buzzer

}

In the code, we check the state of push button. When it is pressed, the output high level controls transistor to

get conducted, and drives active buzzer to make a sound.

Verify and upload the code, press the push button, then the active buzzer will make a sound.

87 Chapter 9 Buzzer █ www.freenove.com

Project 9.2 Passive Buzzer

In the Iast section, we have finished using transistor to driven active buzzer to beep. Now, we will try to use

passive buzzer to make a sound with different frequency.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

NPN transistor

x1

Passive buzzer

x1

Resistor 1kΩ x1

Jumper M/M x4

88 Chapter 9 Buzzer www.freenove.com █

Circuit

Use D9 port of Freenove UNO to drive a passive buzzer.

Schematic diagram

Hardware connection

Sketch

Sketch 9.2.1

Now, write code to drive a passive buzzer to make a warning sound. The frequency of that conforms roughly

to following sine curve over time:

89 Chapter 9 Buzzer █ www.freenove.com

Output PWM wave with different frequency to the port, which is connected to transistor, to drive buzzer to

make a sound with different frequency.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int buzzerPin = 9; // the number of the buzzer pin

float sinVal; // Define a variable to save sine value

int toneVal; // Define a variable to save sound frequency

void setup() {

 pinMode(buzzerPin, OUTPUT); // Set Buzzer pin to output mode

}

void loop() {

 for (int x = 0; x < 360; x++) { // X from 0 degree->360 degree

 sinVal = sin(x * (PI / 180)); // Calculate the sine of x

 toneVal = 2000 + sinVal * 500; // Calculate sound frequency according to the sine of x

 tone(buzzerPin, toneVal); // Output sound frequency to buzzerPin

 delay(1);

 }

}

In the code, use one loop to control the sound frequency, varying according to sine curve in the range

2000±500.

10

11

12

13

14

15

 for (int x = 0; x < 360; x++) { // X from 0 degree->360 degree

 sinVal = sin(x * (PI / 180)); // Calculate the sine of x

 toneVal = 2000 + sinVal * 500; // Calculate sound frequency according to the sine of x

 tone(buzzerPin, toneVal); // Output sound frequency to buzzerPin

 delay(1);

 }

The parameter of sin() function is radian, so we should convert unit of π from angle to radian first before using

it.

tone(pin, frequency)

Generates a square wave of the specified frequency (and 50% duty cycle) on a pin.

Verify and upload the code, passive buzzer starts making a warning sound.

You can try using PNP transistor to complete the project of this chapter again.

90 Chapter 10 Motor www.freenove.com █

Chapter 10 Motor

Before, we have done a series of interesting projects with Freenove UNO and basic electronic components.

Now, let's study some movable electronic modules. In this chapter, we will learn to control the motor.

Project 10.1 Control Motor by Relay

First, use relay to control the Motor.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Jumper M/M x8

AA Battery holder x1 (Need AA battery x2)

Resistor 10kΩ x2

Resistor 1kΩ x1

Resistor 220Ω x1

NPN transistor

x1

Relay x1

Motor x1

Push button x1

LED x1

Diode x1

91 Chapter 10 Motor █ www.freenove.com

Component knowledge

Motor

Motor is a device that converts electrical energy into mechanical energy. Motor consists of two parts: stator

and rotor. When motor works, the stationary part is stator, and the rotating part is rotor. Stator is usually the

outer case of motor, and it has terminals to connect to the power. Rotor is usually the shaft of motor, and can

drive other mechanical devices to run. Diagram below is a small DC motor with two pins.

When motor get connected to the power supply, it will rotate in one direction. Reverse the polarity of power

supply, then motor rotates in opposite direction.

+ - - +

Capacitor

The unit of capacitance(C) is farad (F). 1F=1000000μF, 1μF=1000000pF.

Capacitor is an energy storage device, with a certain capacitance. When capacitor voltage increases, the

capacitor will be charged. And capacitor will discharge when the voltage drops. So capacitor voltage of both

ends is not transient. According to this characteristic, capacitor is often used to stabilize the voltage of power

supply, and filters the signal. Capacitor with large capacity can filter out low frequency signals, and small-

capacity capacitor can filter out high frequency signals.

The capacitor has a non-polar capacitor and a polar capacitor. Generally, non-polar capacitor has small

capacitance, and a ceramic non-polar capacitor is shown below.

For polar capacitor, it usually has larger capacitance, and an electrolytic polar capacitor of that is shown

below:

92 Chapter 10 Motor www.freenove.com █

When the motor rotates, it will generate noise. As the contact of coil connects and disconnects the electrode

constantly, it will cause the supply voltage unstable. Thus, a small capacitor is often connected to motor to

reduce the impact on power supply from motor.

Relay

Relay is an electrical switch, which consists of coils and contacts. When the coil is energized, it will form the

electromagnet, attracting contacts to close. Coils and contacts are independent of each other, so other

independent circuit can be controlled by relay, through using a small current to control the circuit with large

current. Diagram below is a relay with control voltage of 5V.

Pin 5 and pin 6 are connected to each other inside. When the coil pin3 and 4 get connected to 5V power

supply, pin 1 will be disconnected to pin 5&6 and pin 2 will be connected to pin 5&6. So pin 1 is called close

end, pin 2 is called open end.

Inductor

The unit of inductance(L) is the henry (H). 1H=1000mH, 1mH=1000μH.

Inductor is an energy storage device that converts electrical energy into magnetic energy. Generally, it

consists of winding coil, with a certain amount of inductance. Inductor will hinder the changing current

passing through the inductor. When the current passing through inductor increases, it will attempt to hinder

the increasing trend of current; and when the current passing through the inductor decreases, it will attempt

to hinder the decreasing trend of current. So the current passing through inductor is not transient.

The reference circuit for relay is as follows. The coil of relay can be equivalent to inductor, when the

transistor disconnects power supply of the relay, the current in the coil of the relay can't stop immediately,

causing an impact on power supply. So a parallel diode will get connected to both ends of relay coil pin in

reversing direction, then the current will pass through diode, avoiding the impact on power supply.

93 Chapter 10 Motor █ www.freenove.com

Circuit

Use D12 of Freenove UNO to detect the state of push button, and D9 to control the relay. As motor running

needs larger power, we will use two AA batteries to supply power for the motor alone.

Schematic diagram

Hardware connections

94 Chapter 10 Motor www.freenove.com █

Sketch

Sketch 10.1.1

Now, write code to detect the state of push button. Each time you press the button, the switching status of

relay will change. So we control the motor to rotate or stop in this way.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

int relayPin = 9; // the number of the relay pin

int buttonPin = 12; // the number of the push button pin

int buttonState = HIGH; // Record button state, and initial the state to high level

int relayState = LOW; // Record relay state, and initial the state to low level

int lastButtonState = HIGH; // Record the button state of last detection

long lastChangeTime = 0; // Record the time point for button state change

void setup() {

 pinMode(buttonPin, INPUT); // Set push button pin into input mode

 pinMode(relayPin, OUTPUT); // Set relay pin into output mode

 digitalWrite(relayPin, relayState); // Set the initial state of relay into "off"

 Serial.begin(9600); // Initialize serial port,and set baud rate to 9600

}

void loop() {

 int nowButtonState = digitalRead(buttonPin); // Read current state of button pin

 // If button pin state has changed, record the time point

 if (nowButtonState != lastButtonState) {

 lastChangeTime = millis();

 }

 // If button state changes, and stays stable for a while, then it should have skipped the bounce area

 if (millis() - lastChangeTime > 10) {

 if (buttonState != nowButtonState) { // Confirm button state has changed

 buttonState = nowButtonState;

 if (buttonState == LOW) { // Low level indicates the button is pressed

 relayState = !relayState; // Reverse relay state

 digitalWrite(relayPin, relayState); // Update relay state

 Serial.println("Button is Pressed!");

 }

 else { // High level indicates the button is released

 Serial.println("Button is Released!");

 }

 }

 }

 lastButtonState = nowButtonState; // Save the state of last button

}

95 Chapter 10 Motor █ www.freenove.com

In this code, we used a new method to detect button state. In the loop() function, the level state of button pin

is detected constantly. When the level is changed, record this time. If the level has not changed after a while,

it will be considered bounce area has already been skipped. Then, judge whether the button is pressed or

released according to button pin state.

First, define two variables to record the state of button and relay.

4

5

int buttonState = HIGH; // Record button state, initial the state into high level

int relayState = LOW; // Record relay state, initial the state into low level

Define a variable to record button pin state of last detection.

6 int lastButtonState = HIGH; // Record the button state of last detection

Define a variable to record the time of the last button pin changes.

7 long lastChangeTime = 0; // Record the time point for button state change

In the loop() function, the detected pin state of button will be compared with the last detected state. If it

changes, record this time.

16

17

18

19

20

21

…

36

37

void loop() {

 int nowButtonState = digitalRead(buttonPin); // Read current state of button pin

 // If the state of button pin has changed, record the time point

 if (nowButtonState != lastButtonState) {

 lastChangeTime = millis();

 }

…

 lastButtonState = nowButtonState; // Save the state of last button

}

If the level stays unchanged over a period of time, it is considered bounce area has already been skipped.

23

…

35

 if (millis() - lastChangeTime > 10) {

 …

 }

After the pin state stays stable, the changed state of button is confirmed, then it will be recorded for the next

comparison.

24

25

…

34

 if (buttonState != nowButtonState) { // Confirm button state has changed

 buttonState = nowButtonState;

 …

 }

Judge whether the button is pressed or released according to button pin level, print button information to

serial port, and reverse relay when the button is pressed.

26

27

28

29

30

31

32

33

 if (buttonState == LOW) { // Low level indicates the button is pressed

 relayState = !relayState; // Reverse relay state

 digitalWrite(relayPin, relayState); // Update relay state

 Serial.println("Button is Pressed!");

 }

 else { // High level indicates the button is released

 Serial.println("Button is Released!");

 }

96 Chapter 10 Motor www.freenove.com █

This button detecting method does not put program into the state of delay waiting, you can increase the

efficiency of code execution.

millis()

Returns the number of milliseconds since the Arduino board began running the current program.

Verify and upload the code, every time you press the push button, the state of relay and motor changes once.

97 Chapter 10 Motor █ www.freenove.com

Project 10.2 Control Motor by L293D

Now, we will use dedicated chip L293D to control the Motor.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Jumper M/M x10

AA Battery holder x1

Motor x1

L293D x1

Rotary potentiometer x1

98 Chapter 10 Motor www.freenove.com █

Component knowledge

L293D

L293D is a chip integrated with 4-channel motor drive. You can drive a unidirectional motor with 4 ports or a

bi-directional motor with 2 port or a stepper motor.

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2, 7, 10, 15 Channel x digital signal input pin

Out x 3, 6, 11, 14 Channel x output pin, input high or low level according to In x pin, get

connected to +Vmotor or 0V

Enable1 1 Channel 1 and channel 2 enable pin, high level enable

Enable2 9 Channel 3 and channel 4 enable pin, high level enable

0V 4, 5, 12, 13 Power cathode (GND)

+V 16 Positive electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see datasheet.

When using L293D to drive DC motor, there are usually two kinds of connection.

Following connection uses one channel, and it can control motor speed through PWM, but the motor can

only rotate in one direction.

99 Chapter 10 Motor █ www.freenove.com

Following connection uses two channels: one channel outputs PWM wave, and another channel connects

GND, so you can control the speed of motor. Whe n these two channel signals are exchanged, the current

direction of the motor can be reversed, and the motor will rotate in reverse direction. This can not only

control the speed of motor, but also can control the steering of motor.

In actual use, motor is usually connected to the channel 1 and 2, output different level to in1 and in2 to

control the rotation direction of the motor, and output PWM wave to Enable1 port to control the motor

rotation speed. Or, get motor connected to the channel 3 and 4, output different level to in3 and in4 to

control the motor's rotation direction, and output PWM wave to Enable2 pin to control the motor rotation

speed.

Circuit

Use A0 of Freenove UNO to detect the voltage of rotary potentiometer; D9, D10 to control the motor's

rotation direction, D11 to output PWM wave to control motor speed.

Schematic diagram

GND

GND

100 Chapter 10 Motor www.freenove.com █

Hardware connection

Sketch

Sketch 10.2.1

Now, write the code to control speed and rotation direction of motor through rotary potentiometer. When

the potentiometer stays in the middle position, motor speed will be minimum, and when deviates intermediate

position, the speed will increase. Also, if the potentiometer deviates from the middle position potentiometer

clockwise or counterclockwise, the rotation direction of the motor is different.

101 Chapter 10 Motor █ www.freenove.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

int in1Pin = 10; // Define L293D channel 1 pin

int in2Pin = 9; // Define L293D channel 2 pin

int enable1Pin = 11; // Define L293D enable 1 pin

boolean rotationDir; // Define a variable to save the motor's rotation direction, true and false are

represented by positive rotation and reverse rotation.

int rotationSpeed; // Define a variable to save the motor rotation speed

void setup() {

 // Initialize the pin into an output mode:

 pinMode(in1Pin, OUTPUT);

 pinMode(in2Pin, OUTPUT);

 pinMode(enable1Pin, OUTPUT);

}

void loop() {

 int potenVal = analogRead(A0); // Convert the voltage of rotary potentiometer into digital

 // Compare the number with value 512, if more than 512, clockwise rotates, otherwise, counter

clockwise rotates

 rotationSpeed = potenVal - 512;

 if (potenVal > 512)

 rotationDir = true;

 else

 rotationDir = false;

 // Calculate the motor speed, the far number of deviation from the middle value 512, the faster the

control speed will be

 rotationSpeed = abs(potenVal - 512);

 // Control the steering and speed of the motor

 driveMotor(rotationDir,map(rotationSpeed, 0, 512, 0, 255));

}

void driveMotor(boolean dir, int spd) {

 // Control motor rotation direction

 if (rotationDir) {

 digitalWrite(in1Pin, HIGH);

 digitalWrite(in2Pin, LOW);

 }

 else {

 digitalWrite(in1Pin, LOW);

 digitalWrite(in2Pin, HIGH);

 }

 // Control motor rotation speed

 analogWrite(enable1Pin, constrain(spd, 0, 255));

}

102 Chapter 10 Motor www.freenove.com █

In the code, we write a function to control the motor, and control the speed and steering through two

parameters.

29

30

31

32

33

34

35

36

37

38

39

40

41

void driveMotor(boolean dir, int spd) {

 // Control motor rotation direction

 if (rotationDir) {

 digitalWrite(in1Pin, HIGH);

 digitalWrite(in2Pin, LOW);

 }

 else {

 digitalWrite(in1Pin, LOW);

 digitalWrite(in2Pin, HIGH);

 }

 // Control motor rotation speed

 analogWrite(enable1Pin, constrain(spd, 0, 255));

}

In the loop () function, detect the digital value of rotary potentiometer, and convert that into the motor speed

and steering through calculation.

15

16

17

18

19

20

21

22

23

24

25

26

27

void loop() {

 int potenVal = analogRead(A0); // Convert the voltage of rotary potentiometer into digital

 // Compare the digital number with middle value 512, if more than 512, clockwise rotates, otherwise,

counter clockwise rotates

 rotationSpeed = potenVal - 512;

 if (potenVal > 512)

 rotationDir = true;

 else

 rotationDir = false;

 // Calculate the motor speed, the far number of deviation from the middle value 512, the faster the

control speed will be

 rotationSpeed = abs(potenVal - 512);

 // Control the steering and speed of the motor

 driveMotor(rotationDir, map(rotationSpeed, 0, 512, 0, 255));

}

abs(x)

Computes the absolute value of a number.

Verify and upload the code, turn the shaft of rotary potentiometer, then you can see the change of the motor

speed and direction.

103 Chapter 11 Servo █ www.freenove.com

Chapter 11 Servo

Before, we have used Freenove UNO and L293D module to control the motor speed and steering. Now, we

will use another motor, servo, which can rotate to a certain angle.

Project 11.1 Servo Sweep

First, let's get the servo to rotate.

Component list

Freenove UNO x1

USB cable x1

Jumper M/M x3

Servo x1

104 Chapter 11 Servo www.freenove.com █

Component knowledge

Servo

Servo is an auto-control system, consisting of DC motor, reduction gear, sensor and control circuit. Usually,

it can rotate in the range of 180 degrees. Servo can output larger torque and is widely used in model airplane,

robot and so on. It has three lines, including two for electric power line positive (2-VCC, red), negative (3-

GND, brown), and the signal line (1-Signal, orange).

We use 50Hz PWM signal with a duty cycle in a certain range to drive the servo. The lasting time 0.5ms-2.5ms

of PWM single cycle high level corresponds to the servo angle 0 degrees - 180 degree linearly. Part of the

corresponding values are as follows:

High level time Servo angle

0.5ms 0 degree

1ms 45 degree

1.5ms 90 degree

2ms 135 degree

2.5ms 180 degree

When you change the servo signal, servo will rotate to the designated position.

105 Chapter 11 Servo █ www.freenove.com

Circuit

Use D3 of Freenove UNO to drive the servo.

Pay attention to the color of servo lead wire: VCC (red), GND (brown), and signal line (orange). The wrong

connection can cause damage to servo.

Schematic diagram

Hardware connection

Sketch

Sketch 11.1.1

Now, write the code to control servo, making it sweep in the motion range continuously.

1

2

3

4

5

6

7

8

9

10

11

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int pos = 0; // variable to store the servo position

int servoPin = 3; // define the pin of servo signal line

void setup() {

 myservo.attach(servoPin); // attaches the servo on servoPin to the servo object

}

106 Chapter 11 Servo www.freenove.com █

12

13

14

15

16

17

18

19

20

21

22

void loop() {

 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees

 // in steps of 1 degree

 myservo.write(pos); // tell servo to go to position in variable "pos"

 delay(15); // waits 15ms for the servo to reach the position

 }

 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees

 myservo.write(pos); // tell servo to go to position in variable "pos"

 delay(15); // waits 15ms for the servo to reach the position

 }

}

Servo uses the Servo library, like the following reference to Servo library:

1 #include <Servo.h>

Servo library provides the Servo class that controls it. Different from previous Serial class, the Servo class must

be instantiated before you use:

3 Servo myservo; // create servo object to control a servo

The code above defines an object of Servo type, myservo.

Servo Class

Servo class must be instantiated when used, that is, define an object of Servo type, for example:

 Servo myservo;

Most Arduino control board can define 12 objects of Servo type, namely, it can control up to 12 servos.

The function commonly used in the servo class is as follows:

 myservo.attach(pin): Initialize the servo, the parameter is the port connected to servo signal line;

 myservo.write(angle): Control servo to rotate to the specified angle; parameter here is to specify the

angle.

After the Servo object is defined, it can refer to the function, such as initializing the servo:

9 myservo.attach(servoPin); // attaches the servo on servoPin to the servo object

After initializing the servo, you can control the servo to rotate to a specific angle:

15 myservo.write(pos); // tell servo to go to position in variable "pos"

In the loop () function, we use the loop to control the servo to rotate from 0 degrees to 180 degrees, and

then from 180 degrees to 0 degrees, then repeat the cycle all the time.

Verify and upload the code, the servo starts to sweep continuously.

107 Chapter 11 Servo █ www.freenove.com

Project 11.2 Control Servo by Potentiometer

In the last section, we've made the servo sweep continuously. Now, we will use potentiometer to control the

servo angle.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Rotary potentiometer x1

Servo x1

Jumper M/M x6

108 Chapter 11 Servo www.freenove.com █

Circuit

Use A0 of Freenove UNO to detect the voltage of rotary potentiometer, and D3 to drive the servo.

Schematic diagram

Hardware connection

109 Chapter 11 Servo █ www.freenove.com

Sketch

Sketch 11.2.1

Now, write the code to detect the voltage of rotary potentiometer, and control servo to rotate to a different

angle according to that.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int servoPin = 3; // define the pin of servo signal line

int potPin = 0; // analog pin used to connect the potentiometer

int potVal; // variable to read the potValue from the analog pin

void setup() {

 myservo.attach(servoPin); // attaches the servo on servoPin to the servo object

}

void loop() {

 potVal = analogRead(potPin); // reads the potValue of the potentiometer

 potVal = map(potVal, 0, 1023, 0, 180);// scale it to use it with the servo

 myservo.write(potVal); // sets the servo position

 delay(15); // waits for the servo to get there

}

In the code, we obtain the ADC value of A0 pin, and map it to the servo angle.

Verify and upload the code, turn the potentiometer shaft, then the servo will rotate to the corresponding

angle.

110 Chapter 12 Temperature Sensor www.freenove.com █

Chapter 12 Temperature Sensor

Before, we have used Freenove UNO and photoresistor to detect the intensity of light. Now, we will learn to

use the temperature sensor.

Project 12.1 Detect the temperature

We will use a temperature sensor LM35 to detect the ambient temperature.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LM35 x1

Jumper M/M x3

111 Chapter 12 Temperature Sensor █ www.freenove.com

Component knowledge

LM35

LM35 is a temperature sensor with high precision integrated circuit, and it can reach up to the accuracy of ±

1/4℃ without calibration. LM35 has three pins, including two for power supply pins (1-VCC, 3-GND) and one

for signal output pin (2-Vout):

The voltage value LM35 outputs is proportional to Celsius temperature, and the temperature value can be

calculated by the following formula: Vout=0mv+10mv/°C * t°C.

If the temperature is 30°c, Vout=0mv+10mv/C * 30C=300mV=0.3V。

For more details, please see datasheet.

Circuit

Use A0 of Freenove UNO to detect the voltage value of LM35 output pin.

Schematic diagram

Hardware connection

112 Chapter 12 Temperature Sensor www.freenove.com █

Sketch

Sketch 12.1.1

Now, write the code to detect the voltage value of LM35 output pin, calculate the temperature value, and

send it to Serial Monitor window.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

void setup() {

 Serial.begin(9600); // Initialize the serial port, set the baud rate into 9600

 Serial.println("UNO is ready!"); // Print the string "UNO is ready!"

}

void loop() {

 int lmVal = analogRead(A0); // Convert analog value of A0 port into digital value

 // Calculate the temperature value according to the converted digital value

 float temVal = (float)lmVal / 1023.0 * 5.0 / 0.01;

 // Send the result to computer through serial port

 Serial.print("Current temperature is: ");

 Serial.print(temVal);

 Serial.println(" C");

 delay(500);

}

In the code, we obtain the ADC value of A0 pin, and convert it into temperature value, then send it to the

serial port.

Verify and upload the code, open the Monitor Serial, then you will see the temperature value sent from UNO

board.

113 Chapter 13 Joystick █ www.freenove.com

Chapter 13 Joystick

In the previous chapter, we have learned how to use rotary potentiometer. Now, let's learn a new electronic

module Joystick which working on the same principle as rotary potentiometer.

Project 13.1 Joystick

We will use the serial port to get Joystick data.

Component list

Freenove UNO x1

Joystick x1

USB cable x1

Jumper F/M x5

114 Chapter 13 Joystick www.freenove.com █

Component knowledge

Joystick

Joystick is a kind of sensor used with your fingers, which is widely used in gamepad and remote controller. It

can shift in direction Y or direction X at the same time. And it can also be pressed in direction Z.

Two rotary potentiometers inside the joystick are set to detect the shift direction of finger, and a push

button in vertical direction is set to detect the action of pressing.

X

Y

115 Chapter 13 Joystick █ www.freenove.com

Circuit

Use A0 and A1 port on Freenove UNO board to detect the voltage value of two rotary potentiometers inside

Joystick, and use D8 port to detect the vertical button.

Schematic diagram

Hardware connection

Sketch

Sketch 13.1.1

Now write the sketch to detect the voltage value of these two rotary potentiometers and the state of the

button in vertical direction, then sent the data to Serial Monitor window.

1

2

3

4

5

6

7

8

9

10

11

int xAxisPin = 0; // define X pin of Joystick

int yAxisPin = 1; // define Y pin of Joystick

int zAxisPin = 8; // define Z pin of Joystick

int xVal, yVal, zVal; // define 3 variables to store the values of 3 direction

void setup() {

 pinMode(zAxisPin, INPUT_PULLUP); // initialize the port to pull-up input

 Serial.begin(9600); // initialize the serial port with baud rate 9600

 Serial.println("UNO is ready!"); // print the string "UNO is ready!"

}

116 Chapter 13 Joystick www.freenove.com █

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

void loop() {

 // read analog value in XY axis

 xVal = analogRead(xAxisPin);

 yVal = analogRead(yAxisPin);

 // read digital value of switch in Z axis

 zVal = digitalRead(zAxisPin);

 //print the data read above

 Serial.print("X : ");

 Serial.print(xVal);

 Serial.print(" \t Y : ");

 Serial.print(yVal);

 Serial.print(" \t Z : ");

 Serial.println(zVal);

 delay(200);

}

In the code, we get the ADC value of A0, A1 pin and the state of button, then sent the data to serial port.

INPUT_PULLUP

Set the port to INPUT_PULLUP mode, which is equivalent to configuring the port to INPUT mode, then

connect a resistor with high resistance value to VCC behind the port.

Push button of joystick is left hanging when it is not pressed (connected to no circuits with certain voltage

value). The results of push button port read by UNO are not fixed. So we can det this port for INPUT_PULLUP

mode. Then when the push button is not pressed, the state of the port is high. But if it is pressed, the state

turns into low level.

Verify and upload the code, open the Serial Monitor, then you can see the Joystick state value sent by UNO

board. Shift and press the rocker of joystick with your finger, then you can see the change of value.

117 Chapter 14 Acceleration sensor █ www.freenove.com

Chapter 14 Acceleration sensor

In the previous chapter, we have learned sensors which are used to detect light or temperature. Now we will

learn the sensor which can detect acceleration.

Project 14.1 Acceleration Detection

We will use serial port to get the data of acceleration sensor MPU6050 module.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

MPU6050 module x1

Jumper M/M x4

118 Chapter 14 Acceleration sensor www.freenove.com █

Component knowledge

I2C communication

I2C(Inter-Integrated Circuit) is a two-wire serial communication mode, which can be used to connection of

micro controller and its peripheral equipment. Devices using I2C communication must be connected to the

serial data (SDA) line, and serial clock (SCL) line (called I2C bus). Each device has a unique address and can be

used as a transmitter or receiver to communicate with devicesc onnected to the bus.

MPU6050

MPU6050 is a sensor which integrates 3 axis accelerometer, 3 axes angular accelerometer (called gyroscope)

and 1 digital attitude processor (DMP). The range of accelerometer and gyroscope of MPU6050 can be

changed. A digital temperature sensor with wide range and high precision is integrated within it for

temperature compensation, and the temperature value can be also read out. The MPU6050 module follows

I2C communication protocol and the default address is 0x68.

The port description of the MPU6050 module is as follows:

Pin name Pin number Description

VCC 1 Positive pole of power supply with voltage 5V

GND 2 Negative pole of power supply

SCL 3 I2C communication clock pin

SDA 4 I2C communication data pin

XDA 5 I2C host data pin which can be connected to other devices.

XCL 6 I2C host clock pin which can be connected to other devices.

AD0 7 I2C address bit control pin.

Low level: the device address is 0x68

High level: the device address is 0x69

INT 8 Output interrupt pin

For more detail, please refer to dataheet.

MPU6050 is widely used in the field of balancing vehicles, aircraft and others which need to control the

attitude.

119 Chapter 14 Acceleration sensor █ www.freenove.com

Circuit

Use A4/SDA, A5/SCL port on Freenove UNO board to communicate with MPU6050 module.

Schematic diagram

Hardware connection

120 Chapter 14 Acceleration sensor www.freenove.com █

Sketch

Sketch 14.1.1

Before writting code, we need to import the library file you want to use. These library files are contributed by

other open source developers, which is not previously installed in Arduino Software. Click Add.ZIP Library,

and then add the I2Cdev.zip and MPU6050.zip under Libraries folder.

When these libraries are added, you can locate them in the libraries under Sketchbook location in the File-

Preference window. You can view the source code of these library files to understand their specific usage.

Now write sketch to communicate with the MPU6050 module and send the captured data to Serial Monitor

window.

1

2

3

4

5

6

7

8

// Reference the library to be be used by MPU6050

#include "Wire.h"

#include "I2Cdev.h"

#include "MPU6050.h"

MPU6050 accelgyro; // Construct a MPU6050 object using the default address

int16_t ax, ay, az; // define acceleration values of 3 axes

int16_t gx, gy, gz; // Define variables to save the values in 3 axes of gyroscope

121 Chapter 14 Acceleration sensor █ www.freenove.com

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

#define LED_PIN 13 // the number of the LED pin

bool blinkState = false; // Define a variable to save the state of LED

void setup() {

 Serial.begin(9600); // initialize the serial port, and baud rate is set to 9600

 Serial.println("Initializing I2C devices...");

 Wire.begin(); // initialize I2C

 accelgyro.initialize(); // initialize MPU6050

 Serial.println("Testing device connections...");

 // verify connection

 if (accelgyro.testConnection()) {

 Serial.println("MPU6050 connection successful");

 }

 else {

 Serial.println("MPU6050 connection failed");

 while (1);

 }

 // when you need to calibrate the gravity acceleration, you can set the offset here and

eliminate the note

 // accelgyro.setXAccelOffset(-1200);

 // accelgyro.setYAccelOffset(-2500);

 // accelgyro.setZAccelOffset(1988);

 Serial.print("X.Y.Z offset :\t");

 Serial.print(accelgyro.getXAccelOffset()); Serial.print("\t");

 Serial.print(accelgyro.getYAccelOffset()); Serial.print("\t");

 Serial.print(accelgyro.getZAccelOffset()); Serial.print("\n");

 // initialize LED port

 pinMode(LED_PIN, OUTPUT);

}

void loop() {

 // read raw accel/gyro measurements from device

 accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

 // display tab-separated accel/gyro x/y/z values

 Serial.print("a/g:\t");

 Serial.print(ax); Serial.print("\t");

 Serial.print(ay); Serial.print("\t");

 Serial.print(az); Serial.print("\t");

 Serial.print(gx); Serial.print("\t\t");

 Serial.print(gy); Serial.print("\t\t");

 Serial.println(gz);

 // converted acceleration unit to g and the gyroscope unit to dps (degree per second)

according to the sensitivity

 Serial.print("a/g:\t");

122 Chapter 14 Acceleration sensor www.freenove.com █

51

52

53

54

55

56

57

58

59

60

61

 Serial.print((float)ax / 16384); Serial.print("g\t");

 Serial.print((float)ay / 16384); Serial.print("g\t");

 Serial.print((float)az / 16384); Serial.print("g\t");

 Serial.print((float)gx / 131); Serial.print("d/s \t");

 Serial.print((float)gy / 131); Serial.print("d/s \t");

 Serial.print((float)gz / 131); Serial.print("d/s \n");

 delay(300);

 // blink LED to indicate activity

 blinkState = !blinkState;

 digitalWrite(LED_PIN, blinkState);

}

We reference the libraries desighed for the I2C bus and the MPU6050 to manipulate the MPU6050.

2

3

4

#include "Wire.h"

#include "I2Cdev.h"

#include "MPU6050.h"

MPU6050 library provides MPU6050 class to manipulate the MPU6050, and it is necessary to instantiate an

object of class before using it.

6 MPU6050 accelgyro; // Construct a MPU6050 object using the default address

First initialize the I2C bus, and then initialize the MPU6050.

15

16

 Wire.begin(); // initialize I2C

 accelgyro.initialize(); // initialize MPU6050

Then do a test to confirm whether MPU6050 is connected to the I2C bus and print the related information in

serial port.

19

20

21

22

23

24

25

 if (accelgyro.testConnection()) {

 Serial.println("MPU6050 connection successful");

 }

 else {

 Serial.println("MPU6050 connection failed");

 while (1);

 }

If you want to make the results more close to the actual situation， you can adjust the offset of MPU6050

before using it. You can refer to the MPU6050 library files for more details about setting offset. If there are no

strict requirements, this step can also be ignored.

26

27

28

29

 // when you need to calibrate the gravity acceleration, you can set the offset here and

eliminate the note

 // accelgyro.setXAccelOffset(-1200);

 // accelgyro.setYAccelOffset(-2500);

 // accelgyro.setZAccelOffset(1988);

We can also read out the value of the offset which is already set through following code:

30

31

32

33

 Serial.print("X.Y.Z offset :\t");

 Serial.print(accelgyro.getXAccelOffset()); Serial.print("\t");

 Serial.print(accelgyro.getYAccelOffset()); Serial.print("\t");

 Serial.print(accelgyro.getZAccelOffset()); Serial.print("\n");

123 Chapter 14 Acceleration sensor █ www.freenove.com

Read the values of 3 accelerations and 3 angular accelerations in the loop () function,

40 accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

Then, convert the data and send them to the serial port. For the conversion from the raw data unit of MPU6050

to the standard unit, please refer to dataheet.

& Operator

The function of the operator "&" is to get the address. We know that the parameter of the function is used

to pass the value to the function body. When a function is called, the value of variables that works as

parameters does not change.

If the parameters of function are defined as pointer type, then when the function is called, the variable as

function parameter will be passed to the function body and participate in the operation of the function

body. And the value will be changed. It is equivalent to that the function indirectly return more value.

A pointer type variable points to an address. When we define it, we need to add "*" in front of it, for

example:

int *a;

When the function's parameter is pointer type, and the common variable works as parameter of the

function, the & operator need to be added in front of the parameter.

Verify and upload the code, open the Serial Monitor, then you can see the value of MPU6050 in original state

and converted state, which is sent by UNO board. Rotate and move the MPU6050 module, then you can see

the change of values.

Data sent by this code may be too much for the users not familiar with acceleration. You can choose to

upload sketch 14.1.2, which only send three direction acceleration values to the serial port. And it will be

relatively easy to observe change of numbers, when you rotate and move this module,

124 Chapter 15 LED Matrix www.freenove.com █

Chapter 15 LED Matrix

In the previous chapter, we have learned how to use some modules and sensors and shows some information

on the computer through serial port. Now let us learn some modules which can output images and text.

In this chapter, we will learn how to use the LED matrix to output characters and images.

Project 15.1 74HC595

Firstly, let us learn how to use the 74HC595 chip, which is very helpful for us to control the LED matrix.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

74HC595 x1

LED bar graph x1

Resistor 220Ω x8

Jumper M/M x17

125 Chapter 15 LED Matrix █ www.freenove.com

Code knowledge

Hexadecimal

The conversion between binary and decimal system has been mentioned before. When you write the code,

the number is decimal by default. Hexadecimal numbers need to add the 0x prefix in the code, such as 0x01.

One Hexadecimal bit can present one bumber between 0-15. In order to facilitate writing, the numbers

greater than 9 are writed into the letter A-F (case-insensitive) such as 0x2A. The corresponding relationship

is as follows:

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Represent 0 1 2 3 4 5 6 7 8 9 A B C D E F

Conversion between hexadecimal and decimal system is similar to the conversion between hexadecimal and

binary such as the sixteen digit 0x12:

Sequence 1 0

Number 1 2

When a hexadecimal number need to be converted to decimal number, first, the nth number of it need be

multiplied by n power of 16, then sum all multiplicative results. Take 0x12 as an example:

1 *16^1+2*16^0=18

When decimal number is converted to hexadecimal number, decimal number is divided by 16. Then we will

get quotient and remainder, and quotient obtained will be continuously divided by 16 until quotient is zero.

Arrange all remainders from right to left in a line. Then we complete the conversion. For example:

 Remainder Sequene

16 18 ………… 2 0

16 1 ………… 1 1

 0

The result is of the conversion 0x12.

When you write code, sometimes it is convenient to use hexadecimal, especially involving bit operation,

because 1 hexadecimal number can be expressed by 4 binary number (2^4=16). The corresponding

relationship between 4 bit binary numbers and 1 hexadecimal number is shown as follows:

4 bit binary 0000 0001 0010 0011 0100 0101 0110 0111

1 figure of hexadecimal 0 1 2 3 4 5 6 7

4 of bit binary 1000 1001 1010 1011 1100 1101 1110 1111

1 figure of hexadecimal 8 9 A B C D E F

For example, binary 00010010 is corresponding to hexadecimal 0x12.

126 Chapter 15 LED Matrix www.freenove.com █

Component knowledge

74HC595

74HC595 chip is used to convert serial data into parallel data. 74HC595 can convert the serial data of one

byte to 8 bits, and send its corresponding level to the corresponding 8 ports. With this feature, 74HC595 can

be used to expand the IO port of Arduino board. At least 3 ports on the Arduino board are need to control 8

ports of 74HC595.

The ports of 74HC595 are described as follows:

Pin name Pin number Description

Q0-Q7 15, 1-7 Parallel data output

VCC 16 The positive electrode of power supply, the voltage is 2~6V

GND 8 The negative electrode of power supply

DS 14 Serial data Input

OE 13 Enable output,

When this pin is in high level, Q0-Q7 is in high resistance state

When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel update output: when its electrical level is rising, it will update the

parallel data output.

SH_CP 11 Serial shift clock: when its electrical level is rising, serial data input register will

do a shift.

MR 10 Remove shift register:When this pin is in low level, the content in shift register

will be cleared .

Q7' 9 Serial data output: it can be connected to more 74HC595 in series.

For more detail, please refer to the dataheet.

127 Chapter 15 LED Matrix █ www.freenove.com

Circuit

Use D11, D12, D13 pin on Freenove UNO to control the 74HC595, and connect it to the 8 LEDs of LED bar

graph.

Schematic diagram

Hardware connection

128 Chapter 15 LED Matrix www.freenove.com █

Sketch

Sketch 15.1.1

Now write code to control the 8 LEDs of LED bar graph through 74HC595.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

int latchPin = 12; // Pin connected to ST_CP of 74HC595（Pin12）

int clockPin = 13; // Pin connected to SH_CP of 74HC595（Pin11）

int dataPin = 11; // Pin connected to DS of 74HC595（Pin14）

void setup() {

 // set pins to output

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

 pinMode(dataPin, OUTPUT);

}

void loop() {

 // Define a one-byte variable to use the 8 bits to represent the state of 8 LEDs of LED

bar graph.

// This variable is assigned to 0x01, that is binary 00000001, which indicates only one

LED light on.

 byte x = 0x01;

 for (int j = 0; j < 8; j++) {

 // Output low level to latchPin

 digitalWrite(latchPin, LOW);

 // Send serial data to 74HC595

 shiftOut(dataPin, clockPin, LSBFIRST, x);

 // Output high level to latchPin, and 74HC595 will update the data to the parallel

output port.

 digitalWrite(latchPin, HIGH);

 // make the variable move one bit to left once, then the bright LED move one step to

the left once.

 x <<= 1;

 delay(100);

 }

}

In the code, we configure three pins to control the 74HC595. And define a one-byte variable to control the

state of 8 LEDs through the 8 bits of the variable. The LED lights on when the corresponding bit is 1. If the

variable is assigned to 0x01, that is 00000001 in binary, there will be only one LED on.

15 byte x = 0x01;

129 Chapter 15 LED Matrix █ www.freenove.com

In each loop, the x is sent to 74HC595. The sending process is as follows:

17

18

19

20

21

22

 // Output low level to latchPin

 digitalWrite(latchPin, LOW);

 // Send serial data to 74HC595

 shiftOut(dataPin, clockPin, LSBFIRST, x);

 // Output high level to latchPin, and 74HC595 will update the data to the parallel

output port.

 digitalWrite(latchPin, HIGH);

The x will be shift 1 bit to left in each cycle, which makes the bright LED of the 8 LEDs move one bit.

24 x <<= 1;

<< operator

"<<" is the left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction

and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left:

byte x = 1 << 1;

← ← ← ← ← ← ←

 ← 0 0 0 0 0 0 0 1 ← 0

The result of x is 2（binary 00000010）。

 0 0 0 0 0 0 1 0

Thre is another similar operator" >>". For example, shift binary 00000001 by 1 bit to right:

 byte x = 1 >> 1;

→ → → → → → →

0 → 0 0 0 0 0 0 0 1 →

The result of x is 0（00000000）。

 0 0 0 0 0 0 0 0

X <<= 1 is equivalent to x = x << 1 and x >>= 1 is equivalent to x = x >> 1

Verify and upload the code, then you will see the LED bar graph with the effect of flowing water.

130 Chapter 15 LED Matrix www.freenove.com █

Project 15.2 LED Matrix

In the last section, we have used 74HC595 to control 8 LEDs of the LED bar graph. Now let's use 74HC595 to

control LED matrix.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

LED matrix x1

74HC595 x1

R220 x8

Jumper M/M x33

131 Chapter 15 LED Matrix █ www.freenove.com

Component knowledge

LED matrix

LED matrix is a rectangular display module taht consists of several LEDs. The following is an 8*8 monochrome

LED matrix with 64 LEDs (8 rows and 8 columns).

In order to facilitate the operation and save the ports, positive pole of LEDs in each row and negative pole of

LEDs in each column are respectively connected together inside LED matrix module, which is called Common

Anode. There is another form. Negative pole of LEDs in each row and positive pole of LEDs in each column

are respectively connected together, which is called Common Cathode.

Connection mode of common anode Connection mode of common cathode

Let us learn how connection mode of common anode works. Choose 16 ports on UNO board to connect to

the 16 ports of LED Matrix. Configured one port in columns for low level, which make the column of the port

selected. Then configure the eight ports in row to display content in the selected column. Delay for a moment.

And then select the next column and outputs the corresponding content. This kind of operation to column is

called scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and

each column is represented by one byte.

132 Chapter 15 LED Matrix www.freenove.com █

Column Binary Hexadecimal

1 0001 1100 0x1c

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 0x1c

Scaning rows is another display way of dot matrix. It can save the controller ports, but it still needs 16 ports.

So we use one 74HC595 to save some ports. You can use more 74HC595 to save ports where there are more

ports needed.

Circuit

Use D11, D12, D13 pin on Freenove UNO board to control the 74HC595. And cconnect 74HC595 to the 8

anode pin of Matrix LED, in the meanwhile, connect 8 digitals port on UNO board are to the 8 cathode pins

of LED Matrix.

Schematic diagram

 1 2 3 4 5 6 7 8

 0 0 0 0 0 0 0 0

 0 0 1 1 1 1 0 0

 0 1 0 0 0 0 1 0

 1 0 1 0 0 1 0 1

 1 0 0 0 0 0 0 1

 1 0 0 1 1 0 0 1

 0 1 0 0 0 0 1 0

 0 0 1 1 1 1 0 0

133 Chapter 15 LED Matrix █ www.freenove.com

Hardware connection

134 Chapter 15 LED Matrix www.freenove.com █

Sketch

Sketch 15.2.1

Now write the code to drive LED dot matrix to display static and dynamic images, in fact, the dynamic image

is formed by continuous static image.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

int latchPin = 12; // Pin connected to ST_CP of 74HC595（Pin12）

int clockPin = 13; // Pin connected to SH_CP of 74HC595（Pin11）

int dataPin = 11; // Pin connected to DS of 74HC595（Pin14）

int LEDPin[] = {2, 3, 4, 5, 6, 7, 8, 9}; // column pin (cathode) of LED Matrix

// Define the pattern data for a smiling face

const int smilingFace[] = {

 0x1C, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, 0x1C

};

// Define the data of numbers and letters, and save them in flash area

const int data[] PROGMEM = {

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // " "

 0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1"

 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2"

 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // "3"

 0x00, 0x00, 0x0E, 0x32, 0x7F, 0x02, 0x00, 0x00, // "4"

 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // "5"

 0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6"

 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7"

 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // "8"

 0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // "9"

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, // "0"

 0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, // "A"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, // "B"

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, // "C"

 0x00, 0x00, 0x7F, 0x41, 0x41, 0x3E, 0x00, 0x00, // "D"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E"

 0x00, 0x00, 0x7F, 0x48, 0x48, 0x40, 0x00, 0x00 // "F"

};

void setup() {

 // set pins to output

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

 pinMode(dataPin, OUTPUT);

 for (int i = 0; i < 8; i++) {

 pinMode(LEDPin[i], OUTPUT);

 }

135 Chapter 15 LED Matrix █ www.freenove.com

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

}

void loop() {

 // Define a one-byte variable (8 bits) which is used to represent the selected state of

8 column.

 int cols;

 // Display the static smiling pattern

 for (int j = 0; j < 500; j++) { // repeat 500 times

 cols = 0x01; // Assign 0x01(binary 00000001) to the variable, which represents the

first column is selected.

 for (int i = 0; i < 8; i++) { // display 8 column data by scaning

 matrixColsVal(cols); // select this column

 matrixRowsVal(smilingFace[i]);// display the data in this column

 delay(1); // display them for a period of time

 matrixRowsVal(0x00); // clear the data of this column

 cols <<= 1; // shift"cols" 1 bit left to select the next column

 }

 }

 // Display the dynamic patterns of numbers and letters

 for (int i = 0; i < 128; i++) { // "space，0-9，A-F"16 letters ,each letter hold 8

columns, total 136 columns. Firstly, display space ,then we need shift 128 times（136-8）

 for (int k = 0; k < 10; k++) { // repeat image of each frame 10 times.

 cols = 0x01; // Assign binary 00000001. Means the first column is selected.

 for (int j = i; j < 8 + i; j++) { // display image of each frame

 matrixColsVal(cols); // select this column

 matrixRowsVal(pgm_read_word_near(data + j));// display the data in this column

 delay(1); // display them for a period of time

 matrixRowsVal(0x00); // close the data of this column

 cols <<= 1; // shift"cols" 1 bit left to select the next column

 }

 }

 }

}

void matrixRowsVal(int value) {

 // make latchPin output low level

 digitalWrite(latchPin, LOW);

 // Send serial data to 74HC595

 shiftOut(dataPin, clockPin, LSBFIRST, value);

// make latchPin output high level, then 74HC595 will update the data to parallel

output

 digitalWrite(latchPin, HIGH);

}

136 Chapter 15 LED Matrix www.freenove.com █

79

80

81

82

83

84

85

86

void matrixColsVal(byte value) {

 byte cols = 0x01;

 // Output the column data to the corresponding port.

 for (int i = 0; i < 8; i++) {

 digitalWrite(LEDPin[i], ((value & cols) == cols) ? LOW : HIGH);

 cols <<= 1;

 }

}

In the code, use an array to define the column pins of LED Matrix.

4 int LEDPin[] = {2, 3, 4, 5, 6, 7, 8, 9}; // Column pins (cathode) of LED Matrix

Use another array to define 8 column datas of a smiling face.

7

8

9

const int smilingFace[] = {

 0x1C, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, 0x1C

};

Use another array to define some numbers and letters, and every eight elements of the array represent a dot

matrix pattern data of a numerber or a letter.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

const int data[] PROGMEM = {

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // " "

 0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1"

 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2"

 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // "3"

 0x00, 0x00, 0x0E, 0x32, 0x7F, 0x02, 0x00, 0x00, // "4"

 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // "5"

 0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6"

 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // "7"

 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // "8"

 0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // "9"

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x3E, 0x00, 0x00, // "0"

 0x00, 0x00, 0x3F, 0x44, 0x44, 0x3F, 0x00, 0x00, // "A"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, // "B"

 0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, // "C"

 0x00, 0x00, 0x7F, 0x41, 0x41, 0x3E, 0x00, 0x00, // "D"

 0x00, 0x00, 0x7F, 0x49, 0x49, 0x41, 0x00, 0x00, // "E"

 0x00, 0x00, 0x7F, 0x48, 0x48, 0x40, 0x00, 0x00 // "F"

};

PROGMEM keyword

Microprocessors generally have two storage areas, namely ROM and RAM. ROM is used to store code. And

these stored data will not change with the execution of code until the code are uploaded. RAM is used to

store data, for example, the variables we defined are stored here. The stored data will change in real time

with the execution of the code. Generally, capacity of RAM is small. So we can use PROGMEM keyword to

save the data that don't change in ROM.

137 Chapter 15 LED Matrix █ www.freenove.com

Define two functions, one of them uses UNO port to select the column.

79

80

81

82

83

84

85

86

void matrixColsVal(byte value) {

 byte cols = 0x01;

 // output the column data to the corresponding port.

 for (int i = 0; i < 8; i++) {

 digitalWrite(LEDPin[i], ((value & cols) == cols) ? LOW : HIGH);

 cols <<= 1;

 }

}

Another one uses 74HC595 to write data of the column.

70

71

72

73

74

75

76

77

void matrixRowsVal(int value) {

 // ouput low level to latchPin

 digitalWrite(latchPin, LOW);

 // send serial data to 74HC595

 shiftOut(dataPin, clockPin, LSBFIRST, value);

// output high level to latchPin, then 74HC595 will update the data to parallel output

port

 digitalWrite(latchPin, HIGH);

}

? : operator

"? :" operator is similar to conditional statements. When the expression in front of "?" is tenable, the

statement in front of ":" will be executed. When the expression is not tenable, the statement behind ":" will

be executed. For example:

int a = (1 > 0) ? 2: 3;

Because 1>0 is tenable, so "a" will be assigned to 2.

Bitwise logical operation

There are many bitwise logical operators such as and (&), or (|), xor (^), negate (~). The result of exclusive

or (^) is true only when two corresponding bit is not equal.

&, | and ^ is used to operate the corresponding bit of two numbers. Such as:

byte a = 1 & 2;

"a" will be assigned to 0. The calculation procedure is as follows:

1(00000001)

& 2(00000010)

0(00000000)

Negate (~) is used to negate a number, for example:

byte a = ~15;

"a" will be assigned to 240. The calculation procedure is as follows:

~ 15(00001111)

240(11110000)

138 Chapter 15 LED Matrix www.freenove.com █

In the loop () function, firstly, show the static smile pattern. Selecte one of the 8 columns circularly in turn to

display each the result. Repeat 500 times the process, then we can see a static smile pattern.

45

46

47

48

49

50

51

52

53

54

 for (int j = 0; j < 500; j++) { //repeat 10 times

 cols = 0x01; // variable cols is assigned to 0x01(binary 00000001), then the first

column is selected

 for (int i = 0; i < 8; i++) { // display the data in 8 column data by scaning

 matrixColsVal(cols); // select this column

 matrixRowsVal(smilingFace[i]);// display data in this column

 delay(1); // display the data for a peroid of time

 matrixRowsVal(0x00); // close the data of this column

 cols <<= 1; // shift"cols" 1 bit left to select the next column

 }

 }

Then display the dynamic pattern of the numbers and letters. We have defined space, 0-9, A-F, total of 16

characters (136 columns) in an array, among which 8 adjacent rows of data form one frame. Shift one column

once. There are for 128 frames of image from the first frame (1-8) to the last frame (128-136 column). Each

frame image is displayed 10 times, then display the next frame. Repeat the process above, then we can see

the pattern of scrolling numbers and letters.

56

57

58

59

60

61

62

63

64

65

66

67

68

 for (int i = 0; i < 128; i++) { // "space，0-9，A-F"16 letters ,each letter hold 8

columns, total 136 columns. Firstly, display space ,then we need shift 128 times（136-8）

 for (int k = 0; k < 10; k++) { // repeat image of each frame 10 times.

 cols = 0x01; // Assign binary 00000001. Means the first column is selected.

 for (int j = i; j < 8 + i; j++) { // display image of each frame

 matrixColsVal(cols); // select this column

 matrixRowsVal(pgm_read_word_near(data + j));// display the data in this column

 delay(1); // display them for a period of time

 matrixRowsVal(0x00); // close the data of this column

 cols <<= 1; // shift"cols" 1 bit left to select the next column

 }

 }

 }

}

Verify and upload the code, then LED Matrix begans to display the static smile pattern. A few seconds later,

LED Matrix will display the scrolling number 0-9 and the letter A-F.

139 Chapter 16 LCD1602 █ www.freenove.com

Chapter 16 LCD1602

In the previous chapter, we have used the LED matrix to display images and characters. Now, let us use a

screen module LCD1602 with a higher resolution to display more content.

Project 16.1 Display the string on LCD1602

Firstly, use LCD1602 to display some strings.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Jumper M/M x16

LCD1602 x1

Rotary potentiometer x1

140 Chapter 16 LCD1602 www.freenove.com █

Component knowledge

LCD1602

LCD1602 can display 2 lines of characters in 16 columns. It can display numbers, letters, symbols, ASCII code

and so on. As shown in the following is a monochrome LCD1602 display screen:

Circuit symbol and pin descriptions of LCD1602 are shown as follows:

Pin name Pin number Description

VSS 1 Negative electrode of power supply

VDD 2 Positive electrode of power supply, the voltage is 5V

V0 3 Contrast and adjust the display effect

RS 4 Data/Command selection

RW 5 Read/Write selection

E 6 Enable pin

D0-D7 7-14 Data pin

LED+ 15 Positive electrode of backlight LED, the voltage is 5V

LED- 16 Negative electrode of backlight LED

For more details, please refer to the dataheet.

141 Chapter 16 LCD1602 █ www.freenove.com

Circuit

The connection of Freenove UNO board and LCD1602 is shown below. And use a rotary potentiometer to

adjust the contrast of LCD1602.

Schematic diagram

Hardware connection

142 Chapter 16 LCD1602 www.freenove.com █

Sketch

Sketch 16.1.1

Now write code to make LCD1602 display a string and changing numbers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 // Print a message to the LCD

 lcd.print("hello, world!");

}

void loop() {

 // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting begins with 0):

 lcd.setCursor(0, 1);

 // print the number of seconds since reset:

 lcd.print("Counter:");

 lcd.print(millis() / 1000);

}

Use LiquidCrystal library to control the LCD:

1 #include <LiquidCrystal.h>

LiquidCrystal library provides a specific class used to control LCD1602. We instantiate a LiquidCrystal object,

and we can input some parameters which is related to pins of the LCD1602:

4 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

Initialize the LCD1602 in the setup () function, and the parameters are the number of columns and rows of

characters which LCD can display:

8 lcd.begin(16, 2);

And then print a string:

8 lcd.print("hello, world!");

Print a changing number in the loop () function:

13

14

15

16

17

18

19

20

void loop() {

 // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting begins with 0):

 lcd.setCursor(0, 1);

 // print the number of seconds since reset:

 lcd.print("Counter:");

 lcd.print(millis() / 1000);

}

143 Chapter 16 LCD1602 █ www.freenove.com

Before printing characters, we need to set the coordinate of the printed character, that is, in which line and

which column:

16 lcd.setCursor(0, 1);

If we don't set the coordinate, the string will be printed behind the last printed character.

LiquidCrystal class

The LiquidCrystal class can manipulate common LCD screens. The first step is defining an object of

LiquidCrystal, for example:

 LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

when instantiate the object, we need to write the pins connected to the LCD. There are many different ways

for instantiation LiquidCrystal class. The way we use is shown below:

 LiquidCrystal(rs, enable, d4, d5, d6, d7) ;

The common function of LiquidCrystal is shown below：

 lcd.begin(cols, rows): Initialize the LCD, and the parameters are the number of columns and rows of

characters which LCD can display;

 lcd.setCursor(col, row): set the coordinate of the printed character, and the parameters is the row and

the column (starting from 0, the number 0 represents first line or column);

 lcd.print(data): print the number and letters in the coordinate we set before. If we haven't set the

coordinate, the string will be printed behind the last printed character.

Verify and upload the code, then you will see the LCD1602 display the string and changing number.

If the display of character is not normal, shift the rotary potentiometer to adjust the contrast.

144 Chapter 16 LCD1602 www.freenove.com █

Project 16.2 LCD1602 Clock

In the last chapter, we have used LCD1602 to display some strings, and now let us use LCD1206 to make a

clock.

Component list

Freenove UNO x1

Breadboard x1

USB cable x1

Jumper M/M x19

LCD1602 x1

Rotary potentiometer x1

LM35 x1

145 Chapter 16 LCD1602 █ www.freenove.com

Code knowledge

Timer

Timer can be set to produce an interrupt after a period of time. When the timer interrupt occurs, the processor

will jump to the interrupt function to process the interrupt event. And after completion the processing,

execution will return to the interrupted place to go on. If you don't close the timer, interrupt will occur at

intervals you set.

Program

First time interrupt

Process interrupt event

Configuration timer

Set time

Set time

Second time interrupt

Close timer, then interrupt

will not occer again

146 Chapter 16 LCD1602 www.freenove.com █

Circuit

The connection between Freenove UNO board and LCD1602 is shown below, and a rotary potentiometer is

used to adjust the contrast of LCD1602. A4 port is used to detect the voltage of LM35 output pin.

Schematic diagram

Hardware connection

147 Chapter 16 LCD1602 █ www.freenove.com

Sketch

Sketch 16.2.1

Before starting to write code, we need to import the library file we need. In the Arduino Software menu bar,

click on the Add.ZIP Library, and add the FlexiTimer2.zip under the Libraries folder. The FlexiTimer2 library can

help manipulate the timer.

Now write code to make LCD1602 display the time and temperature, and the time can be modified through

the serial port.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

#include <LiquidCrystal.h> // Contains LiquidCrystal Library

#include <FlexiTimer2.h> // Contains FlexiTimer2 Library

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int tempPin = 4; // define the pin of LM35 temperature sensor

float tempVal; // define a variable to store temperature value

int hour, minute, second; // define variables stored record time

void setup() {

 lcd.begin(16, 2); // set up the LCD's number of columns and rows

 startingAnimation(); // display a dynamic start screen

 FlexiTimer2::set(1000, timerInt); // configure the timer and interrupt function

 FlexiTimer2::start(); // start timer

 Serial.begin(9600); // initialize serial port with baud rate 9600

 Serial.println("UNO is ready!"); // print the string "UNO is ready!"

 Serial.println("Input hour,minute,second to set time.");

}

void loop() {

 // read digital value of LM35 pin and convert the temperature to Celsius

 tempVal = analogRead(tempPin) / 1023.0 * 5.0 / 0.01;

 if (second >= 60) { // when seconds is equal to 60, minutes plus 1

 second = 0;

 minute++;

 if (minute >= 60) { // when minutes is equal to 60, hours plus 1

 minute = 0;

 hour++;

 if (hour >= 24) { // when hours is equal to 24, hours turn to zero

 hour = 0;

 }

 }

 }

 lcdDisplay(); // display temperature and time information on LCD

148 Chapter 16 LCD1602 www.freenove.com █

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

 delay(200);

}

void startingAnimation() {

 for (int i = 0; i < 16; i++) {

 lcd.scrollDisplayRight();

 }

 lcd.print("starting...");

 for (int i = 0; i < 16; i++) {

 lcd.scrollDisplayLeft();

 delay(300);

 }

 lcd.clear();

}

// the timer interrupt function of FlexiTimer2 is executed every 1s

void timerInt() {

 second++; // second plus 1

}

// serial port interrupt function

void serialEvent() {

 int inInt[3]; // define an array to save the received serial data

 while (Serial.available()) {

 for (int i = 0; i < 3; i++) {

 inInt[i] = Serial.parseInt(); // receive 3 integer data

 }

 // print the received data for confirmation

 Serial.print("Your input is: ");

 Serial.print(inInt[0]);

 Serial.print(", ");

 Serial.print(inInt[1]);

 Serial.print(", ");

 Serial.println(inInt[2]);

 // use received data to adjust time

 hour = inInt[0];

 minute = inInt[1];

 second = inInt[2];

 // print the modified time

 Serial.print("Time now is: ");

 Serial.print(hour / 10);

 Serial.print(hour % 10);

 Serial.print(':');

 Serial.print(minute / 10);

149 Chapter 16 LCD1602 █ www.freenove.com

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

 Serial.print(minute % 10);

 Serial.print(':');

 Serial.print(second / 10);

 Serial.println(second % 10);

 }

}

// function used by LCD1602 to display time and temperature

void lcdDisplay() {

 lcd.setCursor(0, 0); // set the cursor to (0,0) (first column,first row).

 lcd.print("TEMP: "); // display temperature information

 lcd.print(tempVal);

 lcd.print("C");

 lcd.setCursor(0, 1); // set the cursor to (0,1) (first column,second row)

 lcd.print("TIME: "); // display time information

 lcd.print(hour / 10);

 lcd.print(hour % 10);

 lcd.print(':');

 lcd.print(minute / 10);

 lcd.print(minute % 10);

 lcd.print(':');

 lcd.print(second / 10);

 lcd.print(second % 10);

}

In the code, we define 3 variables to represent time: second, minute, hour.

9 int hour, minute, second; // define variables to store hour,minute,seconds

Defines a timer with cycle of 1000 millisecond (1 second). And each interrupt makes the second plus 1. When

setting the timer, you need to define a function and pass the function name that works as parameter to

FlexiTimer2::set () function.

14

15

 FlexiTimer2::set(1000, timerInt); // configure timer and timer interrupt function

 FlexiTimer2::start(); // start timer

After every interrupt, the second plus 1.

52

53

54

void timerInt() {

 sec++; // second plus 1

}

:: operator

"::" is scope operator. The function behind "::" belongs to the scope of the front. If we want to call the

function defined in the FlexiTimer2 scope outside, we need to use the "::". It can be global scope operator,

class scope operator and namespace scope operator. It is a namespace scope operator here. Because

functions of FlexiTimer2 library is defined in the namespace of FlexiTimer2, so we can find them in

FlexiTimer2 library file.

150 Chapter 16 LCD1602 www.freenove.com █

In the loop () function, the information on the LCD display will be refreshed at set intervals.

21

…

35

36

37

void loop() {

 …

 lcdDisplay(); // display temperature and time information on LCD

 delay(200);

}

In the loop function, we need to control the second, minute, hour. When the second increases to 60, the

minute adds 1, and reset the second to zero; when the minute increases to 60, the hour adds 1, and reset

the minute to zero; when the hour increases to 24, reset it to zero.

24

25

26

27

28

29

30

31

32

33

34

 if (second >= 60) { // when the second increases to 60, the minute adds 1

 second = 0;

 minute++;

 if (minute >= 60) { //when the minute increases to 60, the hour adds 1

 minute = 0;

 hour++;

 if (hour >= 24) { // when the hour increases to 24, turn it to zero

 hour = 0;

 }

 }

 }

We define a function lcdDisplay () to refresh the information on LCD display. In this function, use two bit to

display the hour, minute, second on the LCD. Such as hour/ 10 is the units, hour% 10 is the tens.

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

void lcdDisplay() {

 lcd.setCursor(0, 0); // set the cursor to (0,0) (first column,first row).

 lcd.print("TEMP: "); // display temperature information

 lcd.print(tempVal);

 lcd.print("C");

 lcd.setCursor(0, 1); // set the cursor to (0,1) (first column,second row)

 lcd.print("TIME: "); // display time information

 lcd.print(hour / 10);

 lcd.print(hour % 10);

 lcd.print(':');

 lcd.print(minute / 10);

 lcd.print(minute % 10);

 lcd.print(':');

 lcd.print(second / 10);

 lcd.print(second % 10);

}

Serial port interrupt function is used to receive the data sent by computer to adjust the time, and return the

data for confirmation.

57

58

59

60

void serialEvent() {

 int inInt[3]; // define an array to save the reveived serial data

 while (Serial.available()) {

 for (int i = 0; i < 3; i++) {

151 Chapter 16 LCD1602 █ www.freenove.com

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

 inInt[i] = Serial.parseInt(); // receive 3 integer data

 }

 // print the received data for confirmation

 Serial.print("Your input is: ");

 Serial.print(inInt[0]);

 Serial.print(", ");

 Serial.print(inInt[1]);

 Serial.print(", ");

 Serial.println(inInt[2]);

 // use the received data to adjust time

 hour = inInt[0];

 minute = inInt[1];

 second = inInt[2];

 // print the modified time

 Serial.print("Time now is: ");

 Serial.print(hour / 10);

 Serial.print(hour % 10);

 Serial.print(':');

 Serial.print(minute / 10);

 Serial.print(minute % 10);

 Serial.print(':');

 Serial.print(second / 10);

 Serial.println(second % 10);

 }

}

We also define a function that displays a scrolling string when the UNO has been just started.

39

40

41

42

43

44

45

46

47

48

49

void startingAnimation() {

 for (int i = 0; i < 16; i++) {

 lcd.scrollDisplayRight();

 }

 lcd.print("starting...");

 for (int i = 0; i < 16; i++) {

 lcd.scrollDisplayLeft();

 delay(300);

 }

 lcd.clear();

}

152 Chapter 16 LCD1602 www.freenove.com █

Verify and upload the code. The LCD screen will display a scrolling string first, and then displays the

temperature and time. We can open Monitor Serial and enter time in the sending area, then click the Send

button to set the time.

153 What's next? █ www.freenove.com

What's next?

Thanks for your reading.

This book is all over here. If you find any mistakes, missions or you have other ideas and questions about

contents of this book or the kit and ect, please feel free to contact us, and we will check and correct it as

soon as possible.

If you want to learn more about Arduino, Raspberry Pi, smart cars, robots and orther interesting products in

science and technology, please continue to focus on our website. We will continue to launch cost-effective,

innovative and exciting products.

Thank you again for choosing Freenove products.

154 Appendix www.freenove.com █

Appendix

ASCII table

155 Appendix █ www.freenove.com

Resistor color code

	Contents
	Preface
	Arduino Board
	Arduino Software
	First Use

	Chapter 1 LED Blink
	Project 1.1 Control LED by Manual Button
	Component list
	Circuit knowledge
	Power supply
	Voltage
	Current
	Resistor

	Component knowledge
	Jumper
	Breadboard
	Push button
	LED

	Circuit

	Project 1.2 Control LED by Arduino
	Component list
	Circuit knowledge
	Analog signal and Digital signal
	Low level and high level

	Code knowledge
	Comments
	Data type
	Constant
	Variable
	Function

	Circuit
	Sketch
	Sketch 1.2.1

	Chapter 2 Two LEDs Blink
	Project 2.1 Two LEDs Blink
	Component list
	Code knowledge
	Parameters of function
	Boolean data type
	Logical operator
	Relation operator
	Conditional statement

	Circuit
	Sketch
	Sketch 2.1.1
	Sketch 2.1.2
	Sketch 2.1.3

	Chapter 3 LED bar graph
	Project 3.1 LED bar graph Display
	Component list
	Component knowledge
	LED bar graph

	Code knowledge
	Array
	Loop

	Circuit
	Sketch
	Sketch 3.1.1
	Sketch 3.1.2

	Chapter 4 LED Blink Smoothly
	Project 4.1 LEDs Emit Different Brightness
	Component list
	Circuit knowledge
	PWM

	Code knowledge
	Return value of function
	return

	Circuit
	Sketch
	Sketch 4.1.1

	Project 4.2 LED Blink Smoothly
	Component list
	Circuit
	Sketch
	Sketch 4.2.1

	Chapter 5 Control LED Through Push Button
	Project 5.1 Control LED Through Push Button
	Component list
	Circuit knowledge
	Connection of Push Button

	Circuit
	Sketch
	Sketch 5.1.1

	Project 5.2 Change LED State by Push Button
	Component List
	Circuit knowledge
	Debounce for push button

	Circuit
	Sketch
	Sketch 5.2.1
	Sketch 5.2.2

	Chapter 6 Serial
	Project 6.1 Send data through Serial
	Component list
	Code knowledge
	Bit and Byte

	Circuit knowledge
	Serial and parallel communication
	Serial communication
	Serial port on Arduino

	Circuit
	Sketch
	Sketch 6.1.1

	Project 6.2 Receive Data through Serial Port
	Component list
	Code knowledge
	Interruption

	Circuit
	Sketch
	Sketch 6.2.1
	Sketch 6.2.2

	Project 6.3 Application of Serial
	Component list
	Circuit
	Sketch
	Sketch 6.3.1

	Chapter 7 ADC
	Project 7.1 ADC
	Component list
	Circuit knowledge
	ADC

	Component knowledge
	Potentiometer
	Rotary potentiometer

	Circuit
	Sketch
	Sketch 7.1.1

	Project 7.2 Control LED by Potentiometer
	Component list
	Circuit
	Sketch
	Sketch 7.2.1

	Project 7.3 Control LED through Photoresistor
	Component list
	Component knowledge
	Photoresistor

	Circuit
	Sketch
	Sketch 7.3.1

	Chapter 8 RGB LED
	Project 8.1 Control RGB LED through Potentiometer
	Component list
	Component knowledge
	RGB LED

	Circuit
	Sketch
	Sketch 8.1.1

	Project 8.2 Colorful LED
	Component list
	Circuit
	Sketch
	Sketch 8.2.1

	Chapter 9 Buzzer
	Project 9.1 Active Buzzer
	Component list
	Component knowledge
	Transistor
	Buzzer

	Circuit
	Sketch
	Sketch 9.1.1

	Project 9.2 Passive Buzzer
	Component list
	Circuit
	Sketch
	Sketch 9.2.1

	Chapter 10 Motor
	Project 10.1 Control Motor by Relay
	Component list
	Component knowledge
	Motor
	Capacitor
	Relay
	Inductor

	Circuit
	Sketch
	Sketch 10.1.1

	Project 10.2 Control Motor by L293D
	Component list
	Component knowledge
	L293D

	Circuit
	Sketch
	Sketch 10.2.1

	Chapter 11 Servo
	Project 11.1 Servo Sweep
	Component list
	Component knowledge
	Servo

	Circuit
	Sketch
	Sketch 11.1.1

	Project 11.2 Control Servo by Potentiometer
	Component list
	Circuit
	Sketch
	Sketch 11.2.1

	Chapter 12 Temperature Sensor
	Project 12.1 Detect the temperature
	Component list
	Component knowledge
	LM35

	Circuit
	Sketch
	Sketch 12.1.1

	Chapter 13 Joystick
	Project 13.1 Joystick
	Component list
	Component knowledge
	Joystick

	Circuit
	Sketch
	Sketch 13.1.1

	Chapter 14 Acceleration sensor
	Project 14.1 Acceleration Detection
	Component list
	Component knowledge
	I2C communication
	MPU6050

	Circuit
	Sketch
	Sketch 14.1.1

	Chapter 15 LED Matrix
	Project 15.1 74HC595
	Component list
	Code knowledge
	Hexadecimal

	Component knowledge
	74HC595

	Circuit
	Sketch
	Sketch 15.1.1

	Project 15.2 LED Matrix
	Component list
	Component knowledge
	LED matrix

	Circuit
	Sketch
	Sketch 15.2.1

	Chapter 16 LCD1602
	Project 16.1 Display the string on LCD1602
	Component list
	Component knowledge
	LCD1602

	Circuit
	Sketch
	Sketch 16.1.1

	Project 16.2 LCD1602 Clock
	Component list
	Code knowledge
	Timer

	Circuit
	Sketch
	Sketch 16.2.1

	What's next?
	Appendix
	ASCII table
	Resistor color code

